

10 October 2023

Bengwenyama drilling update: Results from 39 UG2 intersections average 9.63g/t (6PGE+Au)

Highlights:

- Assay results for 39 UG2 intersections from SPD's 70% owned Bengwenyama project have now returned an average grade of 8.00g/t (3PGE+Au) and 9.63g/t (6PGE+Au) over an average reef width of 69cm. These results continue to confirm the recently stated JORC-2012 Indicated and Inferred Mineral Resource estimate.
- 19,447m of drilling (59 Drillholes) have been completed as of 30 September.
- 7 Drill rigs are now on site.
- A further 19 UG2 and 2 Merensky Reef (MR) intersections have been submitted to the laboratory.
- A 2nd Mineral Resource update is underway and is scheduled to be announced in 4Q23. This will allow completion of a Scoping Study for the project, due for release in early 2024, in line with earlier guidance.

Southern Palladium (ASX:SPD and JSE:SDL), 'Southern Palladium' or 'the Company') is pleased to release an update on the assay results for the ongoing drill programme completed to-date across the MR and UG2 reefs at the Bengwenyama Platinum Group Metal (PGM) project, located on the Eastern Limb of the world class Bushveld Complex, South Africa.

Managing Director Johan Odendaal, said: "The latest drilling results continue to confirm the consistency of the grade and the continuity of the UG2 reef. Both the grade and the reef width align well with the JORC compliant Mineral Resource released on July 10, 2023. The process of updating the geological and estimation model for the second Mineral Resource update is underway and is expected to be finalised in the fourth quarter of 2023. With the collection of additional drillhole intersections and more data on the UG2, we now have enough information to begin compiling a meaningful facies plan, which is currently in development. Furthermore, there are indications of higher reef grades toward the northwest of the current drilling area, which is promising for future mining operations in this resource block. The presence of two additional drill rigs on-site will aid us in achieving our program milestones within the projected timeframe."

Progressive UG2 and Merensky Reef Results

As of 30 September, the drilling programme has completed 19,447m of drilling (including deflections) with assay results for 39 UG2 intersections and 10 MR intersections received from the laboratory. An additional 19 UG2 drillhole intersections (including five deflections) and two MR drillhole intersections have been submitted to the laboratory and awaiting results (Figure 1).

The additional reef intersections are continuing to confirm the average grade of the UG2 chromitite seam with an average 3PGE+Au grade of 8.00 g/t and 6PGE+Au of 9.63 g/t over 69 cm intersection width (refer Table 1). This is very similar to the average grades of the 23 UG2 intersections previously reported in March (refer ASX Announcement 30 March 2023 - Resource estimate for Far East Block discovery underway; results from 23 UG2 intersections average 9.28g/t (6PGE+Au)). There has been a slight

decrease in the reef width from 72 cm to 69 cm but this has resulted in a slight increase in the reef grade from 7.67 g/t to 8.00 g/t.

The cm.g/t (centimetre-grams per tonne), a good measure of metal content, of the UG2 reef remains at 553 cm.g/t as it was previously and is in line with initial predictions. This again confirms the continuity and consistency of the UG2 reef. The prill split remains largely unchanged and also continues to confirm the original anticipated prill split for Pt:Pd:Rh:Au of around 44%: 44%: 10%: 2%.

The reef width has decreased slightly as a result of the additional drilling being focused on the defined Payback Area, located to the southeast of the Eerstegeluk farm, which has a narrower reef width than the north western portion of Eerstgeluk (Figure 2).

There has also not been much change in the MR as there are only two additional intersections (Table 1). This is because much of the recent drilling being conducted in the payback area east of the MR subcrop.

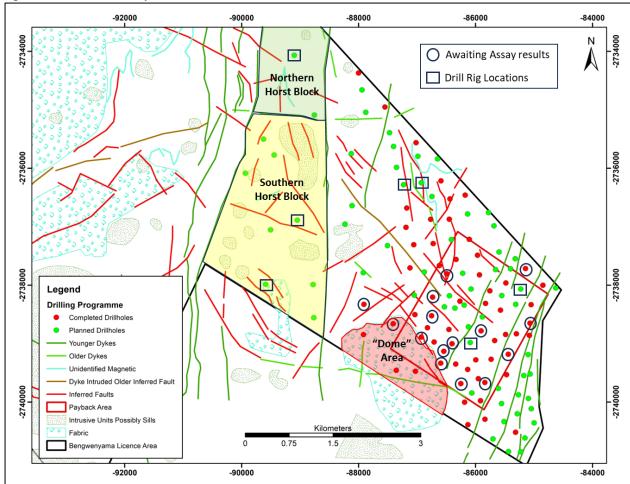


Figure 1: Location of Completed and Planned Drillholes

UG2 Reef Width and Grade trends

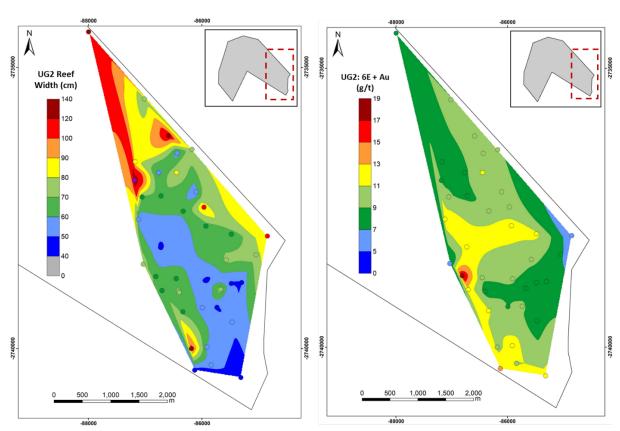
Data trends are starting to develop with the additional reef intersections. The images in Figure 2 and Figure 3 are simple contour plots utilising Golden Software, Surfer 11 to contour the reef width and grade of the UG2 to visualise the trends in the Payback Area and the PFS focus area. Figure 2 (left image) clearly shows the increase in the UG2 reef width from the southeast corner of Eerstegeluk to the northwest of Eerstegeluk.

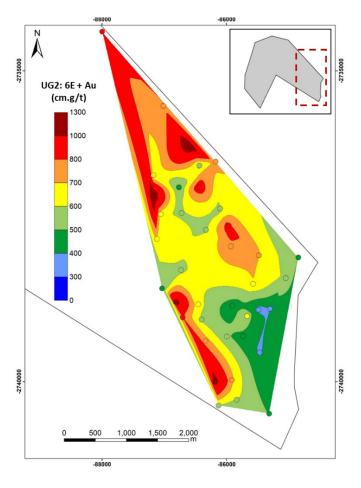
Early indications are that the UG2 reef increases in width to the northwest (NW) of Eerstegeluk. Drillhole E032 has a reef width of 136cm and E001 has a reef width of 118cm, which would suggest a wider mining

cut. Due to the narrower nature of the reef width of the UG2 in the SE, the results to-date indicate the mining cut may be around 1m. Note that the drillhole density in the SE is less than in the NW, so there could be changes to this trend with further drilling.

The UG2 grade (6PGE + Au g/t) is consistent across the drilling area, as can be seen in Figure 2 (right image). As per the drilling results to date the average cm.g/t of the UG2 (3PGE + Au) averages around 550 cm.g/t and for the 6PGE + Au averages around 665 cm.g/t, which is evident in Figure 3. Indications from this figure is that the PGM content of the UG2 increases toward the northwest of Eerstegeluk.

For comparison the average cm.g/t (3PGE+Au) for the Anglo-American Platinum/African Rainbow Modikwa resource to the north is 607 cm.g/t*1, comparable to the Bengwenyama deposit. The Modikwa mine, located some 7km to the north of Bengwenyama project is regarded as a Tier 1 PGM operation. The Modikwa mine produced 290Koz (6PGE+Au) in 2022.




Figure 2 – UG2 Reef Width and Grade Trends:

*Cautionary statement: The reference to the Amplats / ARM 'Modikwa' project in this announcement refers to data that is based on a Measured and Indicated resource. As such, the Modikwa is in a different stage of development to Southern Palladium's Bengwenyama project, and further exploration and development of the Bengwenyama project will be required to fully realise a comparison with respect to the measurement criteria used in this announcement (cm.g/t - centimetre-grams per tonne). There is no certainty that the advancement of infill drilling and ongoing development works at Bengwenyama will result in the same grade of cm.g/t. The Indicated and Inferred Resource at Bengwenyama has been prepared and reported in accordance with the 2012 Edition of the JORC Code.

3

¹ Note: Anglo American Platinum report the average for the Modikwa UG2 Measured and Indicated resource as a grade of 5.89g/t (3PGE +Au) over a resource cut width of 103cm (Reserves and Resources Report 2022)

Figure 3: UG2 Content (cm.g/t) Trend

Ongoing drill programme

Seven drill rigs are now on site (Figure 1) and the focus has been moved from the payback area only to a spread over the wider eastern section and the defined Exploration Target within the Horst Block.

With the additional drillhole intersections and more data on the UG2 being collected there is now sufficient information to start compiling a meaningful facies plan for the deposit.

Of the initial 24,500m of planned drilling (63 drillholes with deflections), 19,447m have been completed, which is comprised of 59 completed drillholes and 21 deflections. Additional drillholes have been planned (Figure 1) with the remaining budget to fill in gaps to assist with structural modelling.

Table 1: Summary of the Progressive UG2 Reef Assay Results

EOSE 140.86 141.31 45 469 564 0.82 0.26 0.19 1.46 0.22 11.37 1.32 0.23 0.01 39.37	BHID	From (m)	To (m)	UG2 sampled width (cm)	Pt (g/t)	Pd (g/t)	Rh (g/t)	Ir (g/t)	Os (g/t)	Ru (g/t)	Au (g/t)	3PGE+Au (g/t)	6PGE+Au (g/t)	Ni (%)	Cu (%)	Cr ₂ O ₃ (%)
E019A 315.83 316.64 81 4.25 4.19 0.79 0.26 0.15 1.31 0.13 9.36 11.09 0.16 0.02 30.87 E033 253.60 254.25 65 4.21 5.00 0.84 0.28 0.16 1.32 0.17 10.21 11.98 0.16 0.02 32.64 0.16 1.33 0.35 0.35 0.25 0.35 0.15 1.18 0.05 7.03 8.59 0.13 0.00 31.07 E031 416.55 417.22 67 3.30 3.73 0.63 0.19 0.13 1.09 0.16 7.81 9.23 0.22 0.06 29.36 E025 26.04 261.32 92 3.53 3.43 0.85 0.24 0.16 1.14 0.10 7.91 9.46 0.18 0.04 258 E025 26.04 261.32 92 3.53 3.43 0.85 0.24 0.16 1.14 0.10 7.91 9.46 0.18 0.04 258 E025 26.04 261.32 92 3.53 3.43 0.85 0.24 0.16 1.14 0.10 7.91 9.46 0.18 0.04 258 E026 26.04 261.32 92 3.53 3.43 0.85 0.24 0.16 1.14 0.10 7.91 9.46 0.18 0.04 258 E027 1.79.98 180.75 77 2.94 2.59 0.59 0.19 0.13 0.09 0.12 0.24 4.00 7.51 0.12 0.10 0.04 28.12 E034 156.17 157.07 90 2.36 1.35 0.49 0.16 0.11 0.03 0.02 4.40 5.51 0.12 0.10 0.04 28.12 E034 156.17 157.07 90 2.36 1.35 0.49 0.16 0.11 0.10 0.33 0.02 4.40 5.51 0.12 0.10 0.04 28.12 E034 156.17 157.07 9.0 2.36 1.35 0.49 0.16 0.11 0.10 0.33 0.02 4.40 5.51 0.12 0.10 0.04 28.12 E034 156.04 156.17 157.07 9.0 2.36 1.35 0.49 0.16 0.14 13.0 0.18 0.82 0.12 0.00 0.16 0.04 13.11 0.10 0.14 0.04 15.0 0.14 0.02 13.0 0.14 0.00 1.49 0.19 10.40 12.40 0.19 0.04 32.46 E030 448.22 450.03 81 3.18 2.09 0.71 0.22 0.15 1.08 0.03 0.01 7.46 0.15 0.02 29.13 0.10 0.14 0.04 2.10 0.04 2.10 0.14 0.10 0.14 0.20 0.15 0.10 0.14 0.14 0.14 0.14 0.14 0.14 0.14	E062	31.25	32.30	105	3.80	3.57	0.88	0.32	0.14	1.43	0.08	8.33	10.22	0.15	0.03	29.56
E033 253.60 254.25 56	E058	140.86	141.31	45	4.69	5.64	0.82	0.26	0.19	1.46	0.22		13.28		0.01	39.37
ED08 373.24 373.81 57 3.40 2.93 0.65 0.23 0.15 1.18 0.05 7.03 8.89 0.13 0.00 31.07 E031 416.55 417.22 67 3.30 3.73 0.63 0.19 0.13 1.09 0.16 7.81 9.23 0.22 0.06 29.36 E025 260.40 261.32 92 3.53 3.43 0.85 0.24 0.16 1.14 0.10 7.91 9.46 0.18 0.04 25.86 E071 179.98 180.75 77 2.94 2.59 0.59 0.19 0.13 0.97 0.12 6.24 7.54 0.16 0.04 28.12 E064 16.17 157.07 90 2.36 1.53 0.49 0.16 0.11 0.83 0.02 4.40 5.51 0.12 0.01 26.50 E030 409.53 410.09 56 4.05 5.20 0.96 0.31 0.20 1.49 0.19 10.40 12.40 0.19 0.04 32.46 E007 417.40 418.14 74 3.98 3.31 0.91 0.29 0.19 1.43 0.08 8.29 10.20 0.16 0.04 31.11 E06001 178.76 179.31 55 4.14 3.49 1.02 0.33 0.23 1.51 0.06 8.72 10.80 0.14 0.02 31.95 E016 449.22 450.03 81 3.18 2.09 0.71 0.22 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 E065 231.79 232.52 73 3.49 3.44 0.83 0.25 0.17 1.27 0.12 7.87 9.57 0.16 0.04 28.87 E016 291.87 292.65 78 3.14 3.69 0.69 0.24 0.18 1.20 0.19 7.72 9.35 0.17 0.05 32.95 E020 342.88 343.88 70 2.99 3.07 0.66 0.22 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.06 0.22 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.22 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.22 0.15 1.05 0.18 6.90 3.2 0.15 0.05 23.98 E067 299.99 300.22 53 2.98 2.35 0.55 0.21 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.99 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.02 32.96 E061 3264.86 5.40 5.40 0.86 0.28 0.18 1.39 0.21 10.51 1.237 0.20 0.16 0.02 32.76 E061 29.87 29.28 5 78 3.14 0.80 0.80 0.29 0.20 1.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.02 32.95 E063 240.96 241.99 43 43 5.09 3.76 2.92 0.83 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.02 32.76 E0601 326.86 5.40 3.3 118 2.82 2.61 0.58 0.21 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.45 0.58 0.58 0.58 0.21 0.10 1.10 1.00 0.10 1.12 3.70 0.00 0.00 3.32.80 E067 284.45 0.85 0.6											0.13		11.09			
E031 446.55 417.22 67 3.30 3.73 0.83 0.19 0.13 1.09 0.16 7.81 9.23 0.22 0.06 29.36 E025 260.40 261.32 92 3.53 3.43 0.85 0.24 0.16 0.11 4.01 7.91 9.46 0.18 0.04 25.86 E071 179.98 180.75 77 2.94 2.59 0.59 0.59 0.19 0.13 0.97 0.12 6.24 7.54 0.16 0.04 25.86 E064 156.17 157.07 90 2.36 1.53 0.49 0.16 0.11 0.83 0.02 4.40 5.51 0.12 0.01 26.50 E030 409.53 410.09 56 4.05 520 0.06 0.31 0.20 1.49 0.19 10.40 12.40 0.19 0.04 32.46 E007 417.40 415.14 74 3.98 3.31 0.91 0.29 0.19 1.43 0.08 8.29 10.20 0.16 0.04 31.11 E06001 178.76 179.31 55 4.14 3.49 1.02 0.33 0.23 1.51 0.06 8.72 10.80 0.14 0.02 31.95 E016 449.22 450.3 81 3.18 2.09 0.71 0.22 0.15 1.08 0.03 6.01 7.46 0.15 0.02 2.91 3 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.08 0.03 6.01 7.46 0.15 0.02 2.91 3 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.08 0.13 6.76 8.19 0.15 0.03 3.83 E065 231.79 232.52 73 3.49 3.44 0.83 0.25 0.17 1.27 0.12 7.87 9.57 0.16 0.04 28.97 E015 2918 7 292.65 78 3.14 3.69 0.99 0.24 0.18 1.20 0.19 7.72 9.35 0.17 0.05 23.98 E020 342.88 343.58 70 2.99 3.07 0.66 0.22 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.88 E067 299.69 30.02 53 2.98 2.35 0.55 0.21 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.03 33.25 E021 342.84 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.25 E021 342.84 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.25 E041 250.33 251.82 69 3.76 2.92 0.33 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.01 3.87 E041 250.33 251.82 69 3.76 2.92 0.33 0.70 1.8 1.20 0.08 7.51 9.38 0.15 0.02 23.95 E022 284.45 285.06 61 3.79 3.11 0.82 0.29 0.20 1.19 1.03 0.11 1.870 1.04 0.16 0.03 33.23 E065 246.99 247.66 67 4.10 4.28 0.85 0.94 0.15 0.05 1.39 0.99 7.81 9.98 0.15 0.02 31.86 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.05 5.33 0.98 0.99 0.10 0.13 0.02 3.76 E0601 248.89 249.46 77 2.98 2.87 0.91 0.91 0.18 1.00 0.5 7.38 9.97 0.17 0.05 31.47 E06021 248.89 249.46 77 2.98 2.87 0.91 0.91 0.18 1.00 0.5 7.3		253.60		65						1.32	0.17	10.21	11.98		0.02	
ED25 260.40 261.32 92 3.53 3.43 0.85 0.24 0.16 1.14 0.10 7.91 9.46 0.18 0.04 25.86 EO71 179.98 180.75 77 2.94 2.59 0.59 0.19 0.13 0.97 0.12 6.24 7.54 0.16 0.04 28.12 16.64 156.17 157.07 90 2.36 1.53 0.49 0.16 0.11 0.83 0.02 44.0 5.51 0.12 0.01 26.50 16.03 409.53 410.09 56 4.05 5.20 0.96 0.31 0.20 1.49 0.19 10.40 12.40 0.19 0.04 32.46 16.007 417.40 418.14 74 3.39 3.31 0.91 0.29 0.19 14.3 0.08 82.9 10.20 0.16 0.04 31.11 16.660D1 178.76 179.31 55 4.14 3.49 1.02 0.33 0.23 1.51 0.06 8.72 10.80 0.14 0.02 31.95 16.04 28.87 245.03 81 3.18 2.09 0.71 0.22 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 16.04 28.87 29.94 71 2.94 3.10 0.59 0.20 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 16.04 28.87 29.25 24.80 3.3 81 3.18 2.09 0.71 0.22 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 16.04 28.87 29.26 78 3.14 3.69 0.89 0.24 0.15 1.08 0.13 6.76 8.19 0.15 0.03 3.36 2.66 231.79 232.52 73 3.49 3.44 0.83 0.25 0.17 1.27 0.12 7.87 9.57 0.16 0.04 28.97 16.15 291.87 292.65 78 3.14 3.69 0.68 0.24 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.98 16.02 342.88 343.58 70 2.99 3.07 0.66 0.22 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.95 16.02 342.88 343.58 70 2.99 3.07 0.66 0.22 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.95 16.04 28.97 28.75 28.75 28.5 3.3 49 3.69 0.89 0.82 0.27 0.19 1.33 0.11 8.70 0.14 9.06 0.03 3.32.3 16.04 28.97 28.75 28.75 28.5 3.3 3.46 3.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.02 32.95 16.04 28.45 28.5 28.5 28.5 0.55 0.21 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.98 16.04 28.45 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.	E028	373.24	373.81			2.93		0.23	0.15	1.18	0.05		8.59		0.00	
E071 179.98 180.75 77 2.94 2.59 0.59 0.19 0.13 0.97 0.12 6.24 7.54 0.16 0.04 28.12 E064 156.17 157.07 90 2.36 1.53 0.49 0.16 0.11 0.83 0.02 4.40 5.51 0.12 0.01 26.50 E007 417.40 418.14 74 3.98 3.31 0.91 0.29 0.19 1.43 0.08 8.29 10.20 0.16 0.04 32.46 E007 417.40 418.14 74 3.98 3.31 0.91 0.29 0.19 1.43 0.08 8.29 10.20 0.16 0.04 31.11 E060D1 178.76 179.31 55 4.14 3.49 1.02 0.33 0.23 1.51 0.06 8.72 10.80 0.14 0.02 31.95 E016 449.22 450.03 81 3.18 2.09 0.71 0.22 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.08 0.13 6.76 8.19 0.15 0.02 29.13 E056 231.79 232.52 73 3.49 3.44 0.83 0.25 0.17 1.27 0.12 7.87 9.57 0.16 0.04 2.89 E067 291.87 292.55 78 3.14 3.69 6.69 0.24 0.18 1.20 0.18 7.72 9.35 0.17 0.05 32.95 E067 299.98 300.22 53 2.99 2.30 0.55 0.21 0.15 1.06 0.04 0.03 5.92 7.32 0.13 0.01 3.18 E024 278.75 279.28 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.02 32.76 E011 321.24 321.76 6.10 3.79 3.11 0.82 0.27 0.19 1.33 0.11 8.70 0.149 0.16 0.02 32.76 E041 250.93 251.62 6.99 3.76 2.99 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 2.89 E041 250.93 251.62 6.99 3.76 2.99 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 2.89 E041 250.93 251.62 6.99 3.76 2.99 0.83 0.27 0.18 1.39 0.09 7.81 9.68 0.15 0.02 3.15 E044 250.93 251.62 6.99 3.76 2.99 0.83 0.27 0.18 1.39 0.09 7.81 9.68 0.15 0.02 3.16 E052 264.55 265.66 61 3.79 3.11 0.82 0.20 0.18 1.39 0	E031	416.55	417.22	67		3.73	0.63	0.19	0.13	1.09	0.16	7.81	9.23	0.22	0.06	
E064 156.17 157.07 90 2.36 1.53 0.49 0.16 0.11 0.83 0.02 4.40 5.51 0.12 0.01 26.50 E030 409.53 410.09 56 4.05 5.20 0.96 0.31 0.20 1.49 0.19 10.40 12.40 0.19 0.04 32.46 E007 417.40 418.14 74 3.98 3.31 0.91 0.29 0.19 1.143 0.08 8.29 10.20 0.16 0.04 31.11 E06001 178.76 179.31 55 4.14 3.49 1.02 0.33 0.23 1.51 0.06 8.72 10.80 0.14 0.02 31.95 E016 449.22 450.03 81 3.18 2.09 0.71 0.22 0.15 1.00 0.03 6.01 7.46 0.15 0.02 29.13 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.00 0.03 6.01 7.46 0.15 0.02 29.13 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.00 0.33 6.76 8.19 0.15 0.03 33.63 E065 231.79 232.52 73 3.49 3.44 0.83 0.25 0.17 1.27 0.12 7.87 9.57 0.16 0.04 28.97 E015 29187 292.65 78 3.14 3.69 0.69 0.24 0.18 1.20 0.19 7.72 9.35 0.17 0.05 32.95 E020 342.88 343.58 70 2.99 3.07 0.66 0.22 0.15 1.05 0.18 6.90 8.32 0.15 0.07 0.05 23.98 E067 299.69 30.022 53 2.98 2.35 0.55 0.21 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.02 32.76 E027 284.45 265.06 61 3.79 3.11 0.82 0.29 0.20 1.33 0.07 8.59 9.89 10.49 0.16 0.02 28.97 E001 548.05 549.23 118 2.83 2.61 0.58 0.21 0.15 1.00 1.00 6.12 7.49 0.17 0.00 0.23 3.66 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E044 250.93 24.66 67 4.10 4.28 0.82 0.29 0.20 1.39 0.09 7.81 9.88 0.15 0.01 0.02 33.66 E048 29.79 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.2	E025	260.40	261.32	92	3.53	3.43	0.85	0.24	0.16	1.14	0.10	7.91	9.46	0.18	0.04	25.86
E030	E071	179.98	180.75	77	2.94	2.59	0.59	0.19	0.13	0.97	0.12	6.24	7.54	0.16	0.04	28.12
E007 417.40 418.14 74 3.98 3.31 0.91 0.29 0.19 1.43 0.08 8.29 10.20 0.16 0.04 31.11 E060D1 178.76 179.31 55 4.14 3.49 1.02 0.33 0.23 1.51 0.06 8.72 10.80 0.14 0.02 31.95 E016 449.22 450.03 81 3.18 2.09 0.71 0.22 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.08 0.03 6.01 7.46 0.15 0.02 29.13 E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.08 0.13 6.76 8.19 0.15 0.03 33.63 E065 231.79 232.52 73 3.49 3.44 0.83 0.25 0.17 1.27 0.12 7.87 9.57 0.16 0.04 28.97 E015 291.87 292.65 78 3.14 3.69 0.69 0.24 0.18 1.20 0.19 7.72 9.35 0.17 0.05 32.95 E020 342.88 343.58 70 2.99 3.07 0.66 0.22 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.98 E067 299.69 300.22 53 2.98 2.35 0.55 0.21 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.03 33.26 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.23 E041 250.93 251.62 69 3.76 2.99 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.00 228.97 E001 480.5	E064	156.17	157.07	90	2.36	1.53	0.49	0.16	0.11	0.83	0.02	4.40	5.51	0.12	0.01	26.50
E06001 178.76 179.31 55 4.14 3.49 1.02 0.33 0.23 1.51 0.06 8.72 10.80 0.14 0.02 31.95	E030		410.09	56	4.05	5.20	0.96	0.31	0.20	1.49	0.19	10.40	12.40	0.19	0.04	32.46
E016	E007	417.40	418.14	74	3.98	3.31	0.91	0.29	0.19	1.43	0.08	8.29	10.20	0.16	0.04	31.11
E044 258.73 259.44 71 2.94 3.10 0.59 0.20 0.15 1.08 0.13 6.76 8.19 0.15 0.03 33.63 E065 231.79 232.52 73 3.49 3.44 0.83 0.25 0.17 1.27 0.12 7.87 9.57 0.16 0.04 22.97 E015 291.87 292.65 78 3.14 3.69 0.69 0.24 0.18 1.20 0.19 7.72 9.35 0.17 0.05 32.95 E020 342.88 343.58 70 2.99 3.07 0.66 0.22 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.98 E067 299.69 300.22 53 2.98 2.35 0.55 0.21 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.23 E041 250.93 251.62 69 3.76 2.92 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 28.97 E001 548.05 549.23 118 2.83 2.61 0.58 0.21 0.15 1.01 0.10 0.12 7.49 0.17 0.09 23.90 E027 284.45 285.06 61 3.79 3.11 0.82 0.29 0.29 0.21 3.99 0.09 7.81 9.68 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E014 342.60 343.71 111 3.88 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 1.36 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E0727 284.69 249.46 77 2.98 2.87 0.61 0.22 0.14 1.10 0.15 6.56 8.06 0.14 0.03 31.40 E0502 249.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E0669 240.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E0661 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.10 6.56 8.06 0.14 0.03 31.40 E05021 221.87 221.55 49 3.24 2.77 0.59 0.21 0.15 1.14 0.10 6.56 8.06 0.11 0.13 0.02 30.74 E0661 222.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.10 6.56 8.06 0.11 0.13 0.02 30.74 E0662 280.50 280.98 48 3.40 4.01 0.59 0.19 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E0663 280.50 280.98 48 3.44 4.44 0.10 0.59 0.19 0.14 0.10 0.10 6.56 8.00 0.14 0.03 32.80 E0644 280.50 280.98 48 3.44 4.44 0.41 0.86 0.31 0.20 1.44 0.13 0	E060D1	178.76	179.31	55	4.14	3.49	1.02	0.33	0.23	1.51	0.06	8.72	10.80	0.14	0.02	31.95
E065 231.79 232.52 73 3.49 3.44 0.83 0.25 0.17 1.27 0.12 7.87 9.57 0.16 0.04 28.97 E015 291.87 292.65 78 3.14 3.69 0.69 0.24 0.18 1.20 0.19 7.72 9.35 0.17 0.05 32.95 E020 342.88 343.58 70 2.99 3.07 0.66 0.22 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.98 E067 299.69 300.22 53 2.98 2.35 0.55 0.21 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.98 E067 299.69 300.22 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.23 E041 250.93 251.62 69 3.76 2.92 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 28.97 E001 548.05 549.23 118 2.83 2.61 0.58 0.21 0.15 1.01 0.10 6.12 7.49 0.17 0.09 23.90 E027 284.45 285.06 61 3.79 3.11 0.82 0.29 0.20 1.39 0.09 7.81 9.68 0.15 0.02 31.56 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E014 342.60 343.71 111 3.68 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 247.66 67 4.10 4.28 0.82 0.29 0.20 1.19 0.15 7.39 8.97 0.17 0.05 31.47 E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.10 0.16 0.66 8.06 0.14 0.03 32.98 E032 246.66 32 4.79 0.47 0.48 0.06 0.21 0.15 1.40 0.10 0.15 0.30 32.90 E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 0.57 11.52 0.15 0.03 32.90 E046 228.95 0.88 0.98 48 3.40 4.01 0.59 0.01 0.14 1.04 0.06 5.63 7.01 0.13 0.02 31.47 E076 233.20 233.68 48 3.40 4.01 0.59 0.01 0.14 1.04 0.06 5.63 7.01 0.13 0.02 31.47 E076 233.20 233.68 48 3.40 4.01 0.59 0.01 0.14 1.04 0.06 5.63 7.01 0.13 0.02 31.47 E076 233.20 233.68 48 3.40 4.01 0.59 0.01 0.14 1.04 0.06 5.63 7.01 0.13 0.02 31.49 E046 238.64 239.25 61 5.30 8.77 1.03 0.34 0.23 1.72 0.27 1.537 11.50 0.15 0.03 32.80 E039 9.515 9.573 58 4.56 4.79 0.87 0.97 0	E016	449.22	450.03	81	3.18	2.09	0.71	0.22	0.15	1.08	0.03	6.01	7.46	0.15	0.02	29.13
E015	E044	258.73	259.44	71	2.94	3.10	0.59	0.20	0.15	1.08	0.13	6.76	8.19	0.15	0.03	33.63
E020 342.88 343.58 70 2.99 3.07 0.66 0.22 0.15 1.05 0.18 6.90 8.32 0.15 0.05 23.98 E067 299.69 300.22 53 2.98 2.35 0.55 0.21 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.23 E041 250.93 251.62 69 3.76 2.92 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 28.97 E001 548.05 549.23 118 2.83 2.61 0.58 0.21 0.15 1.01 0.10 6.12 7.49 0.17 0.09 23.90 E027 284.45 285.06 61 3.79 3.11 0.82 0.29 0.20 1.39 0.09 7.81 9.68 0.15 0.02 31.56 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E014 342.60 343.71 111 3.68 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 249.66 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 31.40 E052 246.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E060D1 276.35 276.92 57 3.21 3.41 0.62 0.23 0.15 1.19 0.15 7.39 8.97 0.17 0.05 34.73 E060D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.19 0.15 7.39 8.97 0.17 0.05 34.73 E060D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.10 0.65 6.02 0.15 0.03 32.80 E044 238.64 239.25 61 5.30 8.77 0.30 0.74 0.25 0.15 0.15 0.15 0.03 32.80 E044 238.64 239.25 61 5.30 8.77 0.37 0.37 0.20 0.14 0.10 0.15	E065	231.79	232.52	73	3.49	3.44	0.83	0.25	0.17	1.27	0.12	7.87	9.57	0.16	0.04	28.97
E067 299.69 300.22 53 2.98 2.35 0.55 0.21 0.15 1.04 0.03 5.92 7.32 0.13 0.01 31.88 E024 278.75 279.28 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 32.76 E041 250.93 251.62 69 3.76 2.92 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 2.92 E001 548.05 549.23 118 2.83 2.61 0.58 0.21 0.15 1.01 0.10 6.12 7.49 0.17 0.09 23.90 E027 284.45 285.06 61 3.79 3.11 0.82	E015	291.87	292.65	78	3.14	3.69	0.69	0.24	0.18	1.20	0.19	7.72	9.35	0.17	0.05	32.95
E024 278.75 279.28 53 3.46 4.45 0.76 0.24 0.17 1.20 0.22 8.89 10.49 0.16 0.02 32.76 E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.23 E041 250.93 251.62 69 3.76 2.92 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 28.97 E001 548.05 549.23 118 2.83 2.61 0.58 0.21 0.15 0.00 7.58 9.28 0.21 0.09 28.97 E027 284.45 285.06 61 3.79 3.11 0.82 0.29 0.20 1.39 0.09 7.81 9.68 0.15 0.02 31.56 E069 240.96 241.39 43 5.09 3.47 0.94 0.31	E020	342.88	343.58	70	2.99	3.07	0.66	0.22	0.15	1.05	0.18	6.90	8.32	0.15	0.05	23.98
E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.23 E041 250.93 251.62 69 3.76 2.92 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 28.97 E001 548.05 549.23 118 2.83 2.61 0.58 0.21 0.15 1.01 0.10 0.10 6.12 7.49 0.17 0.09 23.90 E027 284.45 285.06 61 3.79 3.11 0.82 0.29 0.20 1.39 0.09 7.81 9.68 0.15 0.02 31.56 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E014 342.60 343.71 111 3.68 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 249.46 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 31.40 E052 246.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E050D1 276.35 276.92 57 3.21 3.41 0.62 0.23 0.16 1.19 0.15 7.39 8.97 0.17 0.05 31.47 E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.12 6.72 8.21 0.15 0.05 0.15 0.02 32.69 E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 9.57 11.52 0.15 0.03 32.80 E059 95.15 95.73 58 4.56 4.79 0.87 0.87 0.29 0.18 1.31 0.09 7.44 9.19 0.41 12.36 0.17 0.04 27.93 E050D1 276.33 227.59 76 2.63 2.17 0.50 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E059 95.15 95.73 58 4.56 4.79 0.87 0.87 0.28 0.19 1.48 0.19 10.41 12.36 0.17 0.04 27.93 E032D1 226.83 227.59 76 2.63 2.17 0.50 0.07 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E052D 3.57 3.58 4.56 4.79 0.87 0.59 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 32.87 E032D1 243.23 243.69 46 3.77 2.89 0.69 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 30.12 (3PGE+Au) Prill Split (%) 44.7 44.7 9.2	E067	299.69	300.22	53	2.98	2.35	0.55	0.21	0.15	1.04	0.03	5.92	7.32	0.13	0.01	31.88
E013 321.24 321.78 54 4.09 3.69 0.82 0.27 0.19 1.33 0.11 8.70 10.49 0.16 0.03 33.23 E041 250.93 251.62 69 3.76 2.92 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 28.97 E001 548.05 549.23 118 2.83 2.61 0.58 0.21 0.15 1.01 0.10 0.10 6.12 7.49 0.17 0.09 23.90 E027 284.45 285.06 61 3.79 3.11 0.82 0.29 0.20 1.39 0.09 7.81 9.68 0.15 0.02 31.56 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E014 342.60 343.71 111 3.68 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 249.46 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 31.40 E052 246.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E050D1 276.35 276.92 57 3.21 3.41 0.62 0.23 0.16 1.19 0.15 7.39 8.97 0.17 0.05 31.47 E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.12 6.72 8.21 0.15 0.05 0.15 0.02 32.69 E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 9.57 11.52 0.15 0.03 32.80 E059 95.15 95.73 58 4.56 4.79 0.87 0.87 0.29 0.18 1.31 0.09 7.44 9.19 0.41 12.36 0.17 0.04 27.93 E050D1 276.33 227.59 76 2.63 2.17 0.50 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E059 95.15 95.73 58 4.56 4.79 0.87 0.87 0.28 0.19 1.48 0.19 10.41 12.36 0.17 0.04 27.93 E032D1 226.83 227.59 76 2.63 2.17 0.50 0.07 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E052D 3.57 3.58 4.56 4.79 0.87 0.59 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 32.87 E032D1 243.23 243.69 46 3.77 2.89 0.69 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 30.12 (3PGE+Au) Prill Split (%) 44.7 44.7 9.2	E024	278.75	279.28	53	3.46	4.45	0.76	0.24	0.17	1.20	0.22	8.89	10.49	0.16	0.02	32.76
E041 250.93 251.62 69 3.76 2.92 0.83 0.27 0.18 1.25 0.08 7.58 9.28 0.21 0.02 28.97 E001 548.05 549.23 1118 2.83 2.61 0.58 0.21 0.15 1.01 0.10 6.12 7.49 0.17 0.09 23.90 E027 284.45 285.06 61 3.79 3.11 0.82 0.29 0.20 1.39 0.09 7.81 9.68 0.15 0.02 31.56 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 32.88 E032 462.64 464.00 136 3.19 3.50 0.64						3.69	0.82	0.27	0.19	1.33	0.11			0.16	0.03	
E027 284.45 285.06 61 3.79 3.11 0.82 0.29 0.20 1.39 0.09 7.81 9.68 0.15 0.02 31.56 E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E014 342.60 343.71 111 3.68 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 249.46 77 2.98 2.87 0.61		250.93			3.76	2.92	0.83	0.27	0.18	1.25	0.08			0.21	0.02	
E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E014 342.60 343.71 111 3.68 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 249.46 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 34.70 E052D2 247.66 67 4.10 4.28 0.82 0.29	E001	548.05	549.23	118	2.83	2.61	0.58	0.21	0.15	1.01	0.10	6.12	7.49	0.17	0.09	23.90
E069 240.96 241.39 43 5.09 3.47 0.94 0.31 0.20 1.49 0.03 9.53 11.53 0.11 0.01 38.75 E014 342.60 343.71 111 3.68 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 249.46 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 34.70 E052D2 247.66 67 4.10 4.28 0.82 0.29	E027	284.45	285.06	61	3.79	3.11	0.82	0.29	0.20	1.39	0.09	7.81	9.68	0.15	0.02	31.56
E014 342.60 343.71 111 3.68 3.89 0.75 0.29 0.18 1.34 0.12 8.45 10.25 0.18 0.06 32.18 E045 202.19 202.84 65 4.05 5.40 0.86 0.28 0.18 1.39 0.21 10.51 12.37 0.20 0.06 30.58 E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 249.46 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 31.40 E052 246.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E0501 276.35 276.92 57 3.21 3.41 0.62		240.96	241.39	43	5.09	3.47	0.94	0.31	0.20	1.49	0.03	9.53	11.53	0.11	0.01	38.75
E032 462.64 464.00 136 3.19 3.50 0.64 0.22 0.14 1.10 0.05 7.38 8.85 0.13 0.01 25.01 E072D1 248.69 249.46 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 31.40 E052 246.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E050D1 276.35 276.92 57 3.21 3.41 0.62 0.23 0.16 1.19 0.15 7.39 8.97 0.17 0.05 31.47 E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 32.49 E066D1 221.17 221.65 49 3.24 2.77 0.59			343.71	111		3.89	0.75	0.29	0.18	1.34				0.18	0.06	
E072D1 248.69 249.46 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 31.40 E052 246.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E050D1 276.35 276.92 57 3.21 3.41 0.62 0.23 0.16 1.19 0.15 7.39 8.97 0.17 0.05 31.47 E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.12 6.72 8.21 0.15 0.02 32.69 E048 229.75 230.36 61 4.17 4.41 0.86	E045	202.19	202.84	65	4.05	5.40	0.86	0.28	0.18	1.39	0.21	10.51	12.37	0.20	0.06	30.58
E072D1 248.69 249.46 77 2.98 2.87 0.61 0.23 0.15 1.12 0.10 6.56 8.06 0.14 0.03 31.40 E052 246.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E050D1 276.35 276.92 57 3.21 3.41 0.62 0.23 0.16 1.19 0.15 7.39 8.97 0.17 0.05 31.47 E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.12 6.72 8.21 0.15 0.02 32.69 E048 229.75 230.36 61 4.17 4.41 0.86	E032	462.64	464.00	136	3.19	3.50	0.64	0.22	0.14	1.10	0.05	7.38	8.85	0.13	0.01	25.01
E052 246.99 247.66 67 4.10 4.28 0.82 0.29 0.18 1.35 0.15 9.36 11.17 0.19 0.05 34.73 E050D1 276.35 276.92 57 3.21 3.41 0.62 0.23 0.16 1.19 0.15 7.39 8.97 0.17 0.05 31.47 E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.12 6.72 8.21 0.15 0.02 32.69 E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 9.57 11.52 0.15 0.03 32.80 E048 280.50 280.98 48 3.40 4.01 0.59		248.69	249.46		2.98		0.61	0.23	0.15	1.12				0.14	0.03	
E050D1 276.35 276.92 57 3.21 3.41 0.62 0.23 0.16 1.19 0.15 7.39 8.97 0.17 0.05 31.47 E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.12 6.72 8.21 0.15 0.02 32.69 E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 9.57 11.52 0.15 0.03 32.80 E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 9.57 11.52 0.15 0.03 32.80 E048 280.50 280.98 48 3.40 4.01 0.59						4.28	0.82	0.29	0.18	1.35	0.15			0.19	0.05	
E076 233.20 233.68 48 2.96 2.06 0.55 0.20 0.14 1.04 0.06 5.63 7.01 0.13 0.02 30.74 E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.12 6.72 8.21 0.15 0.02 32.69 E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 9.57 11.52 0.15 0.03 32.80 E054 280.50 280.98 48 3.40 4.01 0.59 0.19 0.14 1.08 0.10 8.09 9.49 0.12 0.02 31.94 E046 238.64 239.25 61 5.30 8.77 1.03 0.34 0.23 1.72 0.27 15.37 17.66 0.16 0.03 35.96 E059 95.15 95.73 58 4.56 4.79 0.87				57	3.21	3.41	0.62	0.23	0.16	1.19	0.15			0.17	0.05	
E066D1 221.17 221.65 49 3.24 2.77 0.59 0.21 0.15 1.14 0.12 6.72 8.21 0.15 0.02 32.69 E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 9.57 11.52 0.15 0.03 32.80 E054 280.50 280.98 48 3.40 4.01 0.59 0.19 0.14 1.08 0.10 8.09 9.49 0.12 0.02 31.94 E046 238.64 239.25 61 5.30 8.77 1.03 0.34 0.23 1.72 0.27 15.37 17.66 0.16 0.03 35.96 E059 95.15 95.73 58 4.56 4.79 0.87 0.28 0.19 1.48 0.19 10.41 12.36 0.17 0.04 27.93 E039D1 226.83 227.59 76 2.63 2.17 0.50																
E048 229.75 230.36 61 4.17 4.41 0.86 0.31 0.20 1.44 0.13 9.57 11.52 0.15 0.03 32.80 E054 280.50 280.98 48 3.40 4.01 0.59 0.19 0.14 1.08 0.10 8.09 9.49 0.12 0.02 31.94 E046 238.64 239.25 61 5.30 8.77 1.03 0.34 0.23 1.72 0.27 15.37 17.66 0.16 0.03 35.96 E059 95.15 95.73 58 4.56 4.79 0.87 0.28 0.19 1.48 0.19 10.41 12.36 0.17 0.04 27.93 E039D1 226.83 227.59 76 2.63 2.17 0.50 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E082D1 243.23 243.69 46 3.77 2.89 0.69																
E054 280.50 280.98 48 3.40 4.01 0.59 0.19 0.14 1.08 0.10 8.09 9.49 0.12 0.02 31.94 E046 238.64 239.25 61 5.30 8.77 1.03 0.34 0.23 1.72 0.27 15.37 17.66 0.16 0.03 35.96 E059 95.15 95.73 58 4.56 4.79 0.87 0.28 0.19 1.48 0.19 10.41 12.36 0.17 0.04 27.93 E039D1 226.83 227.59 76 2.63 2.17 0.50 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E082D1 243.23 243.69 46 3.77 2.89 0.69 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 32.87 E087 287.95 288.43 48 4.41 4.71 0.91																
E046 238.64 239.25 61 5.30 8.77 1.03 0.34 0.23 1.72 0.27 15.37 17.66 0.16 0.03 35.96 E059 95.15 95.73 58 4.56 4.79 0.87 0.28 0.19 1.48 0.19 10.41 12.36 0.17 0.04 27.93 E039D1 226.83 227.59 76 2.63 2.17 0.50 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E082D1 243.23 243.69 46 3.77 2.89 0.69 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 32.87 E087 287.95 288.43 48 4.41 4.71 0.91 0.31 0.21 1.44 0.13 10.15 12.10 0.16 0.03 30.84 Weighted Average 69 3.57 3.57 0.74 0.25 0.1																
E059 95.15 95.73 58 4.56 4.79 0.87 0.28 0.19 1.48 0.19 10.41 12.36 0.17 0.04 27.93 E039D1 226.83 227.59 76 2.63 2.17 0.50 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E082D1 243.23 243.69 46 3.77 2.89 0.69 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 32.87 E087 287.95 288.43 48 4.41 4.71 0.91 0.31 0.21 1.44 0.13 10.15 12.10 0.16 0.03 30.84 Weighted Average 69 3.57 3.57 0.74 0.25 0.16 1.22 0.11 8.00 9.63 0.16 0.03 30.12 (3PGE+Au) Prill Split (%) 44.7 44.7 9.2 1.4 100 0.00 0.01																
E039D1 226.83 227.59 76 2.63 2.17 0.50 0.17 0.11 0.77 0.07 5.37 6.42 0.12 0.01 19.69 E082D1 243.23 243.69 46 3.77 2.89 0.69 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 32.87 E087 287.95 288.43 48 4.41 4.71 0.91 0.31 0.21 1.44 0.13 10.15 12.10 0.16 0.03 30.84 Weighted Average 69 3.57 3.57 0.74 0.25 0.16 1.22 0.11 8.00 9.63 0.16 0.03 30.12 (3PGE+Au) Prill Split (%) 44.7 44.7 9.2 1.4 100 0.03 0.04	E059	95.15	95.73	58		4.79		0.28	0.19	1.48	0.19	10.41	12.36			27.93
E082D1 243.23 243.69 46 3.77 2.89 0.69 0.27 0.18 1.31 0.09 7.44 9.19 0.14 0.03 32.87 E087 287.95 288.43 48 4.41 4.71 0.91 0.31 0.21 1.44 0.13 10.15 12.10 0.16 0.03 30.84 Weighted Average 69 3.57 3.57 0.74 0.25 0.16 1.22 0.11 8.00 9.63 0.16 0.03 30.12 (3PGE+Au) Prill Split (%) 44.7 44.7 9.2 1.4 100 100 100 100 100											0.07	5.37			0.01	
E087 287.95 288.43 48 4.41 4.71 0.91 0.31 0.21 1.44 0.13 10.15 12.10 0.16 0.03 30.84 Weighted Average 69 3.57 3.57 0.74 0.25 0.16 1.22 0.11 8.00 9.63 0.16 0.03 30.12 (3PGE+Au) Prill Split (%) 44.7 44.7 9.2 1.4 100<																
Weighted Average 69 3.57 3.57 0.74 0.25 0.16 1.22 0.11 8.00 9.63 0.16 0.03 30.12 (3PGE+Au) Prill Split (%) 44.7 44.7 9.2 1.4 100 10																
(3PGE+Au) Prill Split (%) 44.7 44.7 9.2 1.4 100																
			•													
								2.6	1.7	12.7			100			

Green highlighted BHIDs indicate the additional intersections since the March press release.

Table 1: Summary of the Progressive Merensky Reef Assay Results

BHID	From (m)	To (m)	MR sampled width (cm)	Pt (g/t)	Pd (g/t)	Rh (g/t)	Ir (g/t)	Os (g/t)	Ru (g/t)	Au (g/t)	3PGE+Au (g/t)	6PGE+Au (g/t)	Ni (%)	Cu (%)
E028	66.68	68.68	200	1.49	0.47	0.10	0.03	0.03	0.21	0.08	2.14	2.41	0.09	0.02
E004	210.75	212.92	217	1.15	0.44	0.06	0.02	0.02	0.14	0.07	1.73	1.92	0.10	0.02
E030	142.98	144.77	179	1.66	0.63	0.13	0.04	0.03	0.24	0.15	2.56	2.88	0.13	0.04
E031	122.38	124.31	193	1.69	0.91	0.10	0.03	0.03	0.22	0.16	2.86	3.15	0.14	0.07
E007	100.36	102.56	220	2.15	0.89	0.12	0.04	0.04	0.24	0.11	3.27	3.59	0.19	0.06
E020	54.18	55.39	121	2.11	1.15	0.12	0.04	0.04	0.23	0.37	3.76	4.06	0.26	0.10
E001	259.8	261.66	186	1.07	0.46	0.14	0.03	0.03	0.19	0.05	1.71	1.96	0.10	0.02
E014	37.26	39.68	242	1.40	0.49	0.10	0.03	0.03	0.19	0.11	2.11	2.35	0.10	0.03
E032	171.67	173.8	213	1.38	0.39	0.09	0.03	0.02	0.19	0.06	1.92	2.17	0.09	0.03
E029	40.00	42.00	200	1.71	1.10	0.12	0.05	0.05	0.31	0.14	3.06	3.47	0.20	0.06
We	ighted Ave	erage	197	1.56	0.67	0.11	0.03	0.03	0.21	0.12	2.46	2.73	0.14	0.04
	(3PGE+Au) Prill Split	t (%)	63.5	27.3	4.3				4.9	100			
	(6PGE+Au) Prill Split	t (%)	57.1	24.5	3.9	1.2	1.1	7.8	4.4		100		

Red Italic figures – Possible incomplete intersection with a potentially faulted bottom contact intersection. Green highlighted BHIDs indicate the additional intersections since the March press release.

Updated Resource and Scoping Study

Over the past two months, numerous deflections were drilled to obtain metallurgical samples for metallurgical testing and to support the geotechnical studies conducted as part of the scoping study. These tasks have been completed and our focus has now returned to exploration and infill drilling to secure additional UG2 reef intersections for structural and estimation modelling.

The second resource update is currently in progress and is expected to be completed by the end of November 2023. It is important to note that the drilling conducted during this period was aimed at converting some of the Inferred resources in the East into the Indicated category rather than expanding the resource, which already comprises a substantial 25 million ounces (6E+Au).

Additionally, the geotechnical report is being reviewed, and the results of this study will be made available in the coming weeks. Metallurgical testing is ongoing with results from that analysis also expected to be made available in Q4.

This announcement has been approved for release by the Board of Southern Palladium Limited.

About Southern Palladium:

Southern Palladium Limited (ASX:SPD, JSE:SDL) is a dual-listed platinum group metal (PGM) company developing the advanced Bengwenyama PGM project, particularly rich in palladium/rhodium, in South Africa. The project is located on the Eastern Limb of the Bushveld Complex, which contains more than 70% of the world's known Platinum Group Metal (PGM) Resources.

The Company, holding a 70% stake in the project, will primarily concentrate on delivering a Pre-Feasibility study. Additionally, following the completion of a geophysical survey conducted in 2022 and the September 2023 submission of the Mining Right application, they will oversee the completion of the diamond drill programme initiated in August 2022, along with several other concurrent technical studies.

Bengwenyama presents a substantial opportunity in the global PGM market. Previous exploration efforts have already yielded a JORC 2012-compliant Inferred Mineral Resource of 25.12Moz within two ore horizons—the UG2 chromitite and Merensky Reef, achieved in 2023.

Moreover, an assessment conducted by mining industry consultants CSA Global in 2021, has identified a significant exploration target beyond the currently explored area. The Company is led by a seasoned

on-ground management team, including some of South Africa's most distinguished mining industry executives.

Competent Person Statement

The scientific and technical information contained in this announcement has been reviewed, prepared and approved by Mr Uwe Engelmann (BSc (Zoo. & Bot.), BSc Hons (Geol.), Pr.Sci.Nat. No. 400058/08, FGSSA). Mr Engelmann is a director of Minxcon (Pty) Ltd and a member of the South African Council for Natural Scientific Professions, and has sufficient experience relevant to the styles of mineralisation and activities being undertaken to qualify as a Competent Person, as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Engelmann has a beneficial interest in Southern Palladium through a shareholding in Nicolas Daniel Resources Proprietary Limited.

For further information, please contact:

Johan Odendaal Managing Director Southern Palladium

Phone: +27 82 557 6088

Email: johan.odendaal@southernpalladium.com

Media & investor relations inquiries: Sam Jacobs, Six Degrees Investor Relations: +61 423 755 909

Follow @SouthernPalladium on Twitter

Follow <u>Southern Palladium</u> on LinkedIn

Appendix 1. Reef Intersection Summary for Bengwenyama Drillholes

Drilling			Merensky Reef				UG2 Re	ef
BUID	From	To (m)	Intersection	Commont	From	To (m)	Intersection	Comment
BHID	(m)	To (m)	Width (m)	Comment	(m)	To (m)	Width (m)	Comment
E019	20.25	22.45	2.20	Highly weathered & friable, inconclusive	-	-	-	Hole stopped short
E019a	19.55	22.35	2.80	Highly weathered & friable, inconclusive	315.85	316.61	0.76	Complete intersection
E060	-	-	-	No MR expected - East of MR subcrop	-	-	-	Reef Missing
E060D1	-	-	-	No MR expected - East of MR subcrop	178.78	179.29	0.51	Complete intersection
E062	-	-	-	No MR expected - East of MR subcrop	31.27	32.30	1.03	Complete intersection, moderately weathered
E062D1	-	-	-	No MR expected - East of MR subcrop	31.45	32.27	0.82	Moderately weathered & faulted. Incomplete intersection. Core loss.
E062D2	-	-	-	No MR expected - East of MR subcrop	31.16	31.56	0.40	Moderately weathered & faulted. Incomplete intersection. Core loss.
E058	-	-	-	No MR expected - East of MR subcrop	140.88	141.29	0.41	Complete intersection
E033	-	-	-	No MR expected - East of MR subcrop	253.62	254.25	0.63	Complete intersection
E028	66.70	68.66	1.96	Complete intersection	373.26	373.79	0.53	Complete intersection
E004	210.77	212.90	2.13	Complete intersection	517.33	517.57	0.24	Pothole
E004D1	-	-	-	Deflection below MR	515.83	516.52	0.69	Pothole
E030	143.00	144.68	1.68	Complete intersection No MR expected -	409.55	410.07	0.52	Complete intersection
E025	-	-	-	East of MR subcrop	260.42	261.32	0.90	Complete intersection
E037	-	-	-	No MR expected - East of MR subcrop	-	-	-	Pothole
E049	-	-	-	No MR expected - East of MR subcrop	-	-	-	Faulted
E031	122.40	124.29	1.89	Complete intersection	416.57	417.19	0.62	Complete intersection
E044	-	-	-	No MR expected - East of MR subcrop	258.75	259.42	0.67	Complete intersection
E016	-	-	-	Faulted	449.24	450.01	0.77	Complete intersection
E007	100.38	102.54	2.16	Complete intersection No MR expected -	417.42	418.54	1.12	Complete intersection
E064	-	-	-	East of MR subcrop	156.19	157.05	0.86	Complete intersection
E071	-	-	-	No MR expected - East of MR subcrop	180.04	180.73	0.69	Complete intersection
E065	-	-	-	No MR expected - East of MR subcrop	231.81	232.50	0.69	Complete intersection
E001	259.82	261.64	1.82	Complete intersection	548.07	549.21	1.14	Complete intersection
E015	-	-	-	No MR expected - East of MR subcrop	291.89	292.63	0.74	Complete intersection
E020	54.20	55.39	1.19	Faulted	342.90	343.56	0.66	Complete intersection
E041	-	-	-	No MR expected - East of MR subcrop	250.95	251.60	0.65	Complete intersection
E067	-	-	-	No MR expected - East of MR subcrop	299.70	300.20	0.50	Complete intersection
E013	12.43	14.53	2.10	Highly weathered & friable, inconclusive (core	321.26	321.76	0.50	Complete intersection

				loss & No stringers)				
E024	-	-	-	No MR expected - East of MR subcrop	278.77	279.26	0.49	Complete intersection
E069	-	-	-	No MR expected - East of MR subcrop	240.98	241.39	0.41	Incomplete intersection
E027	-	-	-	No MR expected - East of MR subcrop	284.47	285.04	0.57	Complete intersection
E014	37.28	39.68	2.40	Complete intersection	342.62	343.68	1.06	Complete Intersection
E069D1	-	-	-	No MR expected - East of MR subcrop	241.33	241.63	0.30	Complete Intersection
E001D1	-	-	-	Deflection below MR	547.78	548.26	0.48	Complete Intersection
E014D1	-	-	-	Deflection below MR	343.29	343.74	0.45	Incomplete intersection, core loss & grinding
E014D2	-	-	-	Deflection below MR	342.19	343.06	0.88	Complete Intersection
E032	171.69	173.78	2.09	Complete intersection	462.66	463.98	1.32	Complete Intersection
	-	-	-		29.96	30.44	0.48	Highly weathered & friable, inconclusive
	1	-	-	No MR expected -	237.73	238.06	0.33	LG6A reef
**E057	-	-	1	East of MR subcrop	238.3	238.63	0.33	LG6 reef
	-	-	-	-	238.66	239.85	1.19	LG6 reef
E045	-	-	-	No MR expected - East of MR subcrop	202.205	202.82	0.615	Complete Intersection
	-	-	-		324.59	325.02	0.43	LG6A reef
**E056	1	1	-	No MR expected - East of MR subcrop	325.29	325.56	0.27	LG6 reef
	-	-	-	'	325.82	326.54	0.72	LG6 reef
E052	-	-	-	No MR expected - East of MR subcrop	246.01	247.04	1.03	Complete Intersection
E072	-	-	-	No MR expected - East of MR subcrop	248.48	249.07	0.59	Incomplete intersection, core loss & grinding
E072D1	-	-	-	No MR expected - East of MR subcrop	248.71	249.44	0.73	Complete Intersection
E072D2	-	-	-	No MR expected - East of MR subcrop	248.64	249.28	0.64	Complete Intersection
E029	40.02	42.62	2.60	core loss, top stringer only, inconclusive	314.68	314.88	0.20	Pothole
E050D1	-	-	-	No MR expected - East of MR subcrop	276.37	276.90	0.53	Complete Intersection
E076	-	-	-	No MR expected - East of MR subcrop	233.22	233.77	0.55	Complete Intersection
E029D1	1	-	-	No MR expected - East of MR subcrop	315.08	315.10	0.02	Pothole
E066	-	-	-	No MR expected - East of MR subcrop	221.30	221.64	0.34	Incomplete Intersection Faulted
E066D1	-	-	-	No MR expected - East of MR subcrop	221.19	221.63	0.44	Complete Intersection
E046	-	-	-	No MR expected - East of MR subcrop	238.66	239.22	0.56	Complete Intersection
E048	-	-	-	No MR expected - East of MR subcrop	229.77	230.57	0.80	Complete Intersection
E054	-	-	-	No MR expected - East of MR subcrop	280.52	280.94	0.42	Complete Intersection
E059	-	-	-	No MR expected - East of MR subcrop	95.17	95.70	0.53	Complete Intersection

E039	-	-	-	No MR expected - East of MR subcrop	226.54	226.89	0.35	Incomplete intersection, core loss & Faulted
E039D1	-	-	-	No MR expected - East of MR subcrop	226.85	227.56	0.71	Complete intersection
E120	-	-	-	No MR expected - East of MR subcrop	155.65	155.74	0.09	Pothole
E082	-	-	-	No MR expected - East of MR subcrop	243.15	243.47	0.32	Incomplete intersection, Faulted
E034	25.67	30.15	4.48	Highly weathered & friable, inconclusive	292.00	292.94	0.94	Incomplete intersection, Faulted
E082D1	-	-	-	No MR expected - East of MR subcrop	243.25	243.67	0.42	Complete intersection
E086A	-	-	-	No MR expected - East of MR subcrop	255.62	255.78	0.16	Incomplete intersection, Faulted
E086AD1	-	-	-	No MR expected - East of MR subcrop	256.01	256.34	0.33	Incomplete intersection, Faulted
E087	23.68	28.17	4.49	Highly weathered & friable, inconclusive	287.97	288.61	0.64	Complete intersection
E086AD2	-	-	-	No MR expected - East of MR subcrop	255.46	255.71	0.25	Complete intersection
E120D1	ı	ı	ı	No MR expected - East of MR subcrop	-	-	-	Pothole
E034D1	ı	ı	ı	No MR expected - East of MR subcrop	292.38	292.97	0.59	Incomplete intersection, Faulted
E070	ı	ı	ı	No MR expected - East of MR subcrop	185.15	185.72	0.57	Incomplete intersection, friable & Faulted
E070D1	1	ı	ı	No MR expected - East of MR subcrop	185.29	186.08	0.79	Incomplete intersection, Faulted
E114	ı	ı	ı	No MR expected - East of MR subcrop	-	-	-	Faulted
E034D2	1	1	1	No MR expected - East of MR subcrop	292.74	293.27	0.53	Incomplete intersection, faulted
E051	ı	ı	ı	No MR expected - East of MR subcrop	95.33	95.80	0.47	Incomplete intersection, Grinding
E080	ı	ı	ı	No MR expected - East of MR subcrop	188.64	189.12	0.48	Incomplete intersection, Faulted
E085	-	-	-	No MR expected - East of MR subcrop	247.34	247.91	0.57	Complete intersection
E079	ı	ı	ı	No MR expected - East of MR subcrop	263.00	263.39	0.39	Incomplete intersection, Faulted
E113	1	ı	ı	No MR expected - East of MR subcrop	289.62	289.69	0.07	Pothole
E051D1	-	-	-	No MR expected - East of MR subcrop	95.33	96.45	1.13	Complete intersection
E115	-	-	-	No MR expected - East of MR subcrop	87.75	88.55	0.80	Complete intersection
E118	-	1	-	No MR expected - East of MR subcrop	288.56	289.45	0.89	Complete intersection
E122	-	-	-	No MR expected - East of MR subcrop	179.19	179.75	0.56	Complete intersection
E125	-	-	-	No MR expected - East of MR subcrop	228.25	228.70	0.45	Incomplete intersection, Faulted
E125D1	-	-	-	No MR expected - East of MR subcrop	228.44	228.83	0.39	Incomplete intersection, Faulted

Appendix 2. JORC Checklist – Table 1 Assessment and Reporting Criteria

	SECTION 1: SAM	MPLING TECHNIQUES AND DATA						
Criteria	Explanation	Detail						
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	20 cm samples are taken within the reef horizon unless there is a lithological reason to deviate from this. A single sample is also taken in the hanging wall and footwall to test for mineralisation in the direct waste rock. The samples are split with a core saw and one half is submitted to the laboratory and the other half keep in the core tray.						
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The core is orientated in such a way that the two halves are equal.						
Sampling techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The sampling methodology is standard and as per industry practice in the Bushveld Complex (BC). The samples are 20 cm in length and are split into two equal halves with one half being submitted for analysis. The core size starts as HQ (10 m to 50 m) but is NQ by the time the reef is intersected.						
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	zone but are then drilled NQ once in the fresher material. The drill rigs being utilised have been the CS 1500, Delta 520 and a smaller Longyear 44.						
	Method of recording and assessing core and chip sample recoveries and results assessed.	Initially the core was scanned in with the software ScanIT which scans the core with high resolution photos and the geologists reconcile the depths and core losses per 3 m run. The Core recoveries and RQD are then calculated for the drillhole. ScanIT has however been discontinued and the core is now photographed and the core recovery and RQD is calculated manually by the geological assistants.						
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The geologist informs the drilling supervisor at what depth the reef is expected so that they can take extra precautions around the anticipated reef depth. The core recoveries are measured per 3 m run and if there is excessive core loss in the reef horizon it is marked as a non-representative sample and will not be used in the resource estimation process.						
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Samples have been submitted to the ALS laboratory in Johannesburg, but there is only limited data available at this stage, so this has not been checked yet. The core recoveries for the intersections however all have good core recoveries besides the faulted intersections.						
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	The core was initially scanned into ScanIT software which produced high resolution images. This has however been discontinued. The logging is conducted on paper log sheets or tablets at the core with dropdown menus. Legends have been set up in excel that cover the necessary detailed required for Mineral Resource estimation. Alpha angles and structure detail is also observed and logged. The beta angle is not measured as the core is not orientated but the downhole televiewer survey supplies structural orientation information which is incorporated into the logs.						
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Core logging is qualitative and utilises excel spreadsheets on tablets.						
	The total length and percentage of the relevant intersections logged.	The total drillhole is geologically logged and photographed and the televiewer survey is conducted from 100 m above the reef horizon for additional structural information.						
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	The core is cut in two equal halves for sampling and storage purposes.						
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	This project only makes use of core drilling.						

	SECTION 1: SAM	MPLING TECHNIQUES AND DATA
Criteria	Explanation	Detail
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation code at ALS is PREP-31H which has the following procedure: - Login of samples into the system, weighing, fine crushing of entire sample to 70% - 2 mm, split off 500 g and pulverize split to better than 85% passing 75 microns. The QAQC sequence is as follows: -
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	If the batch is less than 20 samples the batch starts and ends with a blank and a CRM and duplicate are inserted into the sample stream. If the batch is great than 20 samples then the batch starts and ends with a blank and every tenth sample is either a CRM, duplicate or blank. This equates to between 20% and 10% QAQC samples.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	The sampling of the reef is reef material only except for the first and last sample of the reef as it will have 2 cm of hanging wall or footwall material to ensure the entire mineralisation is captured. This 2 cm dilution will be calculated into the reef width. The hanging wall and footwall are sampled separately to the reef. Hence the reef samples are representative of the <i>insitu</i> reef horizon. Requested duplicates are pulp duplicates and the CRMs are material from the UG2 and MR from African Mineral Standards (AMIS).
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The reef horizon is sampled in 20 cm increments so that the grade distribution can be observed if a mining cut is required. The UG2 reef is approximately 70 cm wide and will have three to four samples which will be composited later. The MR is wider at around 200 cm and will have about ten individual samples to determine the grade distribution. These will also be composited later for Mineral Resource Estimation purposes. Hanging wall and footwall samples are also taken to check if there is any mineralisation in the direct surrounding waste rock.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	This is industry best practice for the BC. The UG2 reef will be assayed for 4E and 7E as well as for Cu, Ni, Co, Cr and Fe. The MR will be assayed for the same except the Cr and Fe as it is not a chromitite seam but a pyroxenite layer.
Quality of assay data and laboratory tests		The ALS methods are as follows: - PGM-ICP23 - Pt, Pd, Au package using lead fire assay with ICP-AES finish. 30 g nominal sample weight. Rh-ICP28 - Fire assay fusion using lead flux with Pd collector for Rh determination by ICPAES. 10 g nominal sample weight. PGM-MS25NS - The Platinum Group Metals are separated from the gangue material using the Nickel Sulphide Fire Assay procedure. After dissolution of the pulp with aqua regia, PGMs are determined by ICP-MS. ME-XRF26s - Analysis of Chromite ore samples by fused disc / XRF. This method is suitable for the determination of major and minor elements in ore samples which require a high dilution digest such as Chromite ores. Elements that will be analysed are Cr, Cu, Ni, Fe and Co. The overall pass rate of the various QAQC samples is 90%.
		All methodologies are total.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	All analytical work is undertaken by ALS Chemex South Africa (Pty) Ltd, located in Johannesburg, which is part of the ALS group. The South African laboratory is ISO 17025 accredited by SANAS (South African National Accreditation System).
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	QAQC procedure has been described above.
	The verification of significant intersections by either independent or alternative company personnel.	
	Discuss any adjustment to assay data. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No adjustments have been made to the assayed results. The assay results are received from the laboratory in pdf format and excel format. The excel form is imported into the Minxcon excel database. These are checked by the senior geologist. The assay certificates are stored in the project folder.
	The use of twinned holes.	No twinning has been undertaken to date.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drillhole collar positions are recorded by handheld Garmin GPS. The drillholes will be surveyed in at a later stage.
	Specification of the grid system used.	The coordinate system used is LO31.

	SECTION 1: SAN	IPLING TECHNIQUES AND DATA
Criteria	Explanation	Detail
	Quality and adequacy of topographic control.	Regional three-dimensional (3D) topography was constructed from regional surface contours and Shuttle Radar Topography Mission (SRTM) data. The surface was trimmed 300–500 m beyond the Project perimeter.
	Data spacing for reporting of Exploration Results.	The final drillhole spacing will be approximately 350 m. The drilling completed to date or in progress has a wider spacing to get a better understanding of the larger structural domains of the project.
Data spacing and distribution	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Geological continuity is based on the knowledge of the surrounding area and 3D model constructed from historical data. The 53 of the 59 completed drillholes to date have intersected the UG2 which is confirming the position of the UG2 reef. Of the 14 drillholes expected to intersect the MR 11 have intersected the reef and two have been faulted.
	Whether sample compositing has been applied.	The 20cm (or larger) samples are composited to obtain the weighted average of the entire intersection.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drillholes are vertical drillholes and intersect the reef close to right angles. The sample is therefore unbiased. If the reef is faulted it will be noted and if the reef intersection is not representative, it will not be used in Mineral Resource estimations.
Orientation of data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias will be introduced based on the drilling orientation as they are close to perpendicular.
Sample security	The measures taken to ensure sample security.	Samples are only handled by the drilling contractor and the Minxcon geological staff. There is a strict chain of custody that is followed from the time the core leaves the drill site to the time the sample is received by the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken on the drilling to date.

	SECTION 2: REPORT	RTING OF EXPLORATION RESULTS						
Criteria	Explanation	Detail						
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	A Preferent Prospecting Right LP002PPR was granted to the Bengwenyama Tribe's investment vehicle, Miracle Upon Miracle Investments (Pty) Ltd in 2015 over the farms Eerstegeluk 327 KT and Nooitverwacht 324 KT. This was renewed in early 2021 and is valid until February 2024. The Right covers all elements of potential economic interest.						
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The right is valid until February 2024.						
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Drilling was undertaken by Rustenburg Platinum Mines from 1966 to 1985. Trojan exploration completed drilling on Eerstegeluk between 1990 and 1993. Drilling prior to 1994 was not used as part of this Mineral Resource estimate (MRE) due to the incomplete nature or availability of the drillhole data. Nkwe completed drillholes in 2007–2008. This drilling supports the MRE. Reconnaissance mapping has been completed by previous operators.						
Geology	Deposit type, geological setting and style of mineralisation.	The target UG2 and Merensky reefs occur within the Upper Critical Zone of the Rustenburg Layered Suite of the BC. These reefs are laterally continuous for tens to hundreds of kilometres. The UG2 comprises mineralised chromitite, whereas the Merensky Reef is defined as the mineralised pyroxenitic zone between upper and lower chromitite stringers. The BC is the world's largest igneous intrusion and also the largest global repository of PGEs and chromitite. Both reefs are						

	SECTION 2: REPORT	ΓING	OF I	EXPLO	RATION	RESUI	LTS			
Criteria	Explanation						Det			
						ninor d	isruptiv	e struc	ctural feature	s and
			lacen	nent de	posits.					
	A summary of all information		BHID	Date Started	Date Completed	From (m)	To (m)	Drilled Metres	Comment	
	material to the understanding of the exploration results including a	_	E019	23-Aug-22	05-Sep-22	0.00	32.42	32.42	Abandoned, stuck drill rods	
	tabulation of the following	_	E019a E060	06-Sep-22 26-Aug-22	05-Oct-22 19-Oct-22	0.00	323.77 206.72	323.77 206.72	EOH, completed	
	information for all Material drillholes:	_	E060D1	23-Nov-22	28-Nov-22	139.00	185.53	46.53	EOH, completed	
	* easting and northing of the drillhole	_	E062 E062D1	26-Aug-22 07-Sep-22	02-Sep-22 08-Sep-22	0.00	120.34 34.92	120.34 16.62	extended to UG1 for Deflection completed, faulted UG2	
	collar	Е	062D2	09-Sep-22	10-Sep-22	13.30	33.00	19.70	Deflection completed, faulted UG2	
	* elevation or RL (Reduced Level – elevation above sea level in metres)	_	E058	12-Sep-22 07-Sep-22	05-Oct-22 15-Oct-22	0.00	158.25 261.58	158.25 261.58	EOH, completed	
	of the drillhole collar	l —	E028	07-Oct-22	24-Oct-22	0.00	383.75	383.75	EOH, completed	
	* dip and azimuth of the hole		E004 E004D1	14-Oct-22	15-Nov-22	0.00 457.00	524.50 518.75	524.50 61.75	EOH, completed Deflection completed	
	* down hole length and interception	_	E030	19-Nov-22 26-Oct-22	24-Nov-22 05-Dec-22	0.00	413.75	413.75	EOH, completed	
	depth	_	E025	18-Oct-22	09-Nov-22	0.00	267.58	267.58	EOH, completed	
	* hole length.	_	E037	13-Oct-22 21-Oct-22	02-Nov-22 19-Nov-22	0.00	282.45 322.75	282.45 322.75	EOH, completed corr, completed, extended to UG1 for	
		_	E031	07-Nov-22	22-Nov-22	0.00	423.22	423.22	EOH, completed	
		l ⊢	E044 E016	12-Nov-22 28-Nov-22	14-Dec-22 14-Dec-22	0.00	263.73 454.68	263.73 454.68	EOH, completed	
		_	E007	28-Nov-22	10-Dec-22	0.00	422.80	422.80	EOH, completed	
		_	E064 E071	29-Nov-22 07-Dec-22	06-Dec-22 12-Dec-22	0.00	166.40 188.80	166.40 188.80	EOH, completed	
		_	E071	07-Dec-22 08-Dec-22	12-Dec-22 15-Dec-22	0.00	188.80 239.75	188.80 239.75	EOH, completed	
		_	E001	12-Jan-23	06-Feb-23	0.00	554.75	554.75	EOH, completed	
		_	E015	12-Jan-23 11-Jan-23	19-Jan-23 21-Jan-23	0.00	298.72 350.75	298.72 350.75	EOH, completed	
			E041	13-Jan-23	06-Feb-23	0.00	258.77	258.77	EOH, completed	
		l ⊢	E067	12-Jan-23 23-Jan-23	25-Jan-23 01-Feb-23	0.00	306.45 327.28	306.45 327.28	EOH, completed	
		l ⊢	E024	23-Jan-23	29-Jan-23	0.00	284.75	284.75	EOH, completed	
		_	E069 E027	27-Jan-23	29-Mar-23	0.00	305.45 290.75	305.45 290.75	EOH, Completed	
		_	E027	01-Feb-23 07-Feb-23	21-Feb-23 10-Apr-23	0.00	354.10	354.10	EOH, completed	
		_	E069D1	04-Apr-23	06-Apr-23	180.00	251.65	71.65	EOH, Completed	
		_	E001D1	13-Apr-23 15-Apr-23	18-Apr-23 18-Apr-23	508.00 302.00	552.02 344.04	44.02 42.04	EOH, Completed EOH, Completed	
		l —	E014D2	24-Apr-23	27-Apr-23	292.00	346.55	54.55	EOH, Completed	
		l ⊢	E032	12-Apr-23 08-Apr-23	04-May-23 22-Apr-23	0.00	467.75 299.68	467.75 299.68	EOH, Completed EOH, Completed	
					,					
			E045	01-May-23	10-May-23	0.00	206.55	206.55	EOH, Completed	
Drillhole			**E056	26-Apr-23	12-May-23	0.00	335.70	335.70	EOH, Completed	
Information										
		l ⊢	E052	21-Feb-23	31-May-23	0.00	252.55	255.55	EOH, Completed	
		l ⊢	E072 E072D1	10-May-23 19-May-23	17-May-23 22-May-23	208.00	254.75 251.75	254.75 43.75	EOH, Completed EOH, Completed	
		_	072D2	23-May-23	24-May-23	203.00	251.75	48.75	EOH, Completed	
		_	E029 E050D1	15-May-23 31-May-23	01-Jun-23 07-Jun-23	0.00	320.78 279.98	320.78 94.98	EOH, Completed EOH, Completed	
			E076	31-May-23	08-Jun-23	0.00	239.75	239.75	EOH, Completed	
		l	E029D1 E066	03-Jun-23 10-May-23	09-Jun-23 09-Jun-23	248.00	320.78 225.32	72.78 225.32	EOH, Completed	
		l	E066D1	12-Jun-23	15-Jun-23	161.00	225.62	64.62	EOH, Completed	
		l	E046	10-Jun-23	21-Jun-23	0.00	245.68	245.68	EOH, Completed	
		l —	E048 E054	09-Jun-23 10-Jun-23	19-Jun-23 19-Jun-23	0.00	236.70 287.57	236.70 287.57	EOH, Completed EOH, Completed	
		_	E059	02-Jun-23	24-Jun-23	0.00	99.55	99.55	EOH, Completed	
		_	E039 E039D1	19-Jun-23 28-Jun-23	26-Jun-23 08-Jul-23	0.00	249.30 229.42	249.30 63.42	EOH, Completed EOH, Completed	
			E120	23-Jun-23	08-Jul-23	0.00	218.68	218.68	EOH, Completed	
		l —	E082	21-Jun-23 12-Jul-23	10-Jul-23 20-Jul-23	0.00	248.90 298.38	248.90 298.38	EOH, Completed	
		l ⊢	E034 E082D1	17-Jul-23	19-Jul-23	177.00	245.90	68.90	EOH, Completed	
		l ⊢	E086A 086AD1	28-Jun-23 19-Jul-23	17-Jul-23 21-Jul-23	0.00	260.75 259.75	260.75 64.75	EOH, Completed EOH, Completed	
		_	086AD1 E087	19-Jul-23 28-Jun-23	21-Jul-23 26-Jul-23	0.00	259.75 294.37	64.75 294.37	EOH, Completed EOH, Completed	
		_	086AD2	24-Jul-23	25-Jul-23	195.00	257.75	62.75	EOH, Completed	
		_	E120D1 E034D1	25-Jul-23 25-Jul-23	03-Aug-23 02-Aug-23	95.00 232.00	182.68 296.88	87.68 64.88	EOH, Completed EOH, Completed	
			E070	21-Jul-23	02-Aug-23	0.00	191.90	191.90	EOH, Completed	
		I ⊢	E070D1	04-Aug-23 04-Aug-23	08-Aug-23 08-Aug-23	125.00	191.90	66.90	EOH, Completed	
		I	E114 E034D2	04-Aug-23 05-Aug-23	08-Aug-23 08-Aug-23	227.00	101.68 296.51	101.68 69.51	EOH, Completed	
		ı ⊢	E051	10-Aug-23	15-Aug-23	0.00	105.56 195.17	105.56 195.17	EOH, Completed	
		_	E085	03-Aug-23 09-Aug-23	14-Aug-23 23-Aug-23	0.00	195.17 251.90	195.17 251.90	EOH, Completed EOH, Completed	
		_	E079	17-Aug-23	25-Aug-23	0.00	270.13	270.13	EOH, Completed	
		l	E113	10-Aug-23 11-Sep-23	11-Sep-23 13-Sep-23	50.00	497.60 99.36	497.60 49.36	EOH, Completed	
		_	E115	11-Sep-23 16-Sep-23	13-Sep-23 20-Sep-23	0.00	93.30	93.30	EOH, Completed	
		ı ⊢	E118	29-Aug-23	18-Sep-23	0.00	294.18	294.18 185.70	EOH, Completed	
		l	E122 E125	14-Sep-23 13-Sep-23	20-Sep-23 20-Sep-23	0.00	185.70 233.75	185.70 233.75	EOH, Completed EOH, Completed	
			125D1	21-Sep-23	22-Sep-23	168.00	233.75	65.75	EOH, Completed	
		Al	ı drilli	holes w	ere drilled	1 -90 d	egrees	•		
	<u> </u>	<u> </u>								

	SECTION 2: REPORT	TING OF EXPLORATION RESULTS
Criteria	Explanation	Detail
		The UG2 and MR geological and estimation models have been updated to include drilling and assaying data as at end of March 2023. The structural / geological model utilised 20 historical Nkwe drillholes and 59 SPD drillholes while the estimation model utilised 10 historical Nkwe drillholes and 24 SPD drillholes for the UG2 and 10 historical Nkwe drillholes and 8 SPD drillholes for the MR.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	N/A
	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	With the Mineral Resource update the statistical analysis recommended no top cutting of the grade. In the case of the MR there was one sample that was capped. The Mineral Resource has been declared at a paylimit of 1.9 g/t for the UG2 and 1.6 g/t for the MR. The exploration target range is based on the kriged estimated value with a 20% range applied to it.
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	The individual 20cm samples are combined per drillhole per reef intersection for the composite grades used in the estimation process.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent has been reported but the various elements have been combined for 3PGE+Au grades (4E) and 6PGE+au grades (7E).
Relationship between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The intersection lengths stated are the downhole lengths. The drillholes are drilled at -90 degrees and the reef dip is expected to be approximately 6 degrees. Therefore, the difference should be minimal.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	A map of the drillhole positions is included in this and the previous press release. A stratigraphic column has been completed for the project (in press releases). A section has been included in the press release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reef intersection depths for all the drillholes have been reported in the table below.

	SECTION 2: REPORT	INC OF	EVD		TION	DECLUTO	•			
Criteria	Explanation	ING OF	EXP	LURA	TION		Detai	ı		
		Drilling			Merensky Reef				UG2 Re	
		BHID E019	From (m) 20.25	To (m) 22.45	Width (m)	Comment Highly weathered &	From (m)	To (m)	Width (m)	Comment Hole stopped short
		E019a	19.55	22.35	2.80	friable, inconclusive Highly weathered & friable, inconclusive	315.85	316.61	0.76	Complete intersection
		E060	-	-	-	No MR expected - East of MR subcrop No MR expected - East of	-	-	-	Reef Missing
		E060D1				MR subcrop No MR expected - East of MR subcrop	178.78 31.27	179.29 32.30	1.03	Complete intersection Complete intersection, moderately
		E062D1				MR subcrop No MR expected - East of MR subcrop	31.45	32.30	0.82	weathered Moderately weathered & faulted. Incomplete intersection. Core loss.
		E062D2				No MR expected - East of MR subcrop	31.16	31.56	0.40	Moderately weathered & faulted. Incomplete intersection. Core loss.
		E058				No MR expected - East of MR subcrop No MR expected - East of	140.88	141.29	0.41	Complete intersection
		E033	66.70	68.66	1.96	MR subcrop Complete intersection	253.62 373.26	254.25 373.79	0.63	Complete intersection Complete intersection
		E004	210.77	212.90	2.13	Complete intersection	517.33	517.57	0.24	Pothole
		E004D1			-	Deflection below MR	515.83	516.52	0.69	Pothole
		E030	143.00	144.68	1.68	Complete intersection No MR expected - East of	409.55 260.42	410.07 261.32	0.52	Complete intersection Complete intersection
		E025	-		-	MR subcrop No MR expected - East of MR subcrop	200.42	201.32	0.90	Pothole
		E049	-	-		No MR expected - East of MR subcrop	-			Faulted
		E031	122.40	124.29	1.89	Complete intersection No MR expected - East of	416.57	417.19	0.62	Complete intersection
		E016		-	-	MR subcrop Faulted	258.75 449.24	259.42 450.01	0.67	Complete intersection Complete intersection
		E007	100.38	102.54	2.16	Complete intersection	417.42	418.54	1.12	Complete intersection
		E064				No MR expected - East of MR subcrop	156.19	157.05	0.86	Complete intersection
		E071 E065				No MR expected - East of MR subcrop No MR expected - East of	180.04 231.81	180.73 232.50	0.69	Complete intersection Complete intersection
		E005	259.82	261.64	1.82	MR subcrop Complete intersection	548.07	549.21	1.14	Complete intersection
		E015				No MR expected - East of MR subcrop	291.89	292.63	0.74	Complete intersection
		E020	54.20	55.39	1.19	Faulted No MR expected - East of	342.90	343.56	0.66	Complete intersection
		E041 E067	-	-		MR subcrop No MR expected - East of MR subcrop	250.95 299.70	251.60 300.20	0.65	Complete intersection Complete intersection
		E013	12.43	14.53	2.10	friable, inconclusive (core	321.26	321.76	0.50	Complete intersection
		E024				No MR expected - East of MR subcrop No MR expected - East of	278.77	279.26	0.49	Complete intersection
		E069		-		MR subcrop No MR expected - East of	240.98	241.39 285.04	0.41	Incomplete intersection Complete intersection
		E014	37.28	39.68	2.40	MR subcrop Complete intersection	342.62	343.68	1.06	Complete Intersection
		E069D1	-	-	-	No MR expected - East of MR subcrop	241.33	241.63	0.30	Complete Intersection
		E001D1		-		Deflection below MR	547.78	548.26	0.48	Complete Intersection Incomplete intersection, core loss &
		E014D1 E014D2	-	-		Deflection below MR Deflection below MR	343.29 342.19	343.74 343.06	0.45	grinding Complete Intersection
		E032	171.69	173.78	2.09	Complete intersection	462.66	463.98	1.32	Complete Intersection
		**E057		-			29.96	30.44	0.48	Highly weathered & friable, inconclusive
				-		No MR expected - East of MR subcrop	237.73	238.06 238.63	0.33	LG6A reef
			-				238.66	239.85	1.19	LG6 reef
		E045				No MR expected - East of MR subcrop	202.205	202.82	0.615	Complete Intersection
		**E056	-	-	-	No MR expected - East of	324.59	325.02	0.43	LG6A reef
						MR subcrop	325.29 325.82	325.56 326.54	0.27	LG6 reef
		E052		-	-	No MR expected - East of MR subcrop	246.01	247.04	1.03	Complete Intersection
		E072	-			No MR expected - East of MR subcrop No MR expected - East of	248.48	249.07	0.59	Incomplete intersection, core loss & grinding
		E072D1		-	-	MR subcrop	248.71	249.44	0.73	Complete Intersection Complete Intersection
		E029	40.02	42.62	2.60	MR subcrop core loss, top stringer only, inconclusive	314.68	314.88	0.20	Pothole
		E050D1	-	-	-	No MR expected - East of MR subcrop No MR expected - East of	276.37	276.90	0.53	Complete Intersection
		E076 E029D1	-	-	-	MR subcrop No MR expected - East of	233.22 315.08	233.77 315.10	0.55	Complete Intersection Pothole
		E066	-	-	-	MR subcrop No MR expected - East of MR subcrop	221.30	221.64	0.34	Incomplete Intersection Faulted
		E066D1	-	-	-	No MR expected - East of MR subcrop	221.19	221.63	0.44	Complete Intersection
		E046 E048	-	-	-	No MR expected - East of MR subcrop No MR expected - East of	238.66	239.22	0.56	Complete Intersection
		E048	-	-	-	MR subcrop No MR expected - East of MR subcrop	280.52	280.94	0.42	Complete Intersection
		E059	-	-	-	No MR expected - East of MR subcrop	95.17	95.70	0.53	Complete Intersection
		E039	-	-	-	No MR expected - East of MR subcrop No MR expected - East of	226.54	226.89	0.35	Incomplete intersection, core loss & Faulted Complete intersection
		E039D1	-	-	-	MR subcrop No MR expected - East of MR subcrop	226.85 155.65	227.56 155.74	0.71	Pothole
		E082	-	-	-	No MR expected - East of MR subcrop	243.15	243.47	0.32	Incomplete intersection, Faulted
		E034	25.67	30.15	4.48	Highly weathered & friable, inconclusive No MR expected - East of	292.00	292.94	0.94	Incomplete intersection, Faulted
		E082D1	-	-	-	MR subcrop No MR expected - East of	243.25 255.62	243.67 255.78	0.42	Complete intersection Incomplete intersection, Faulted
		E086AD1	-	-	-	MR subcrop No MR expected - East of MR subcrop	256.01	256.34	0.33	Incomplete intersection, Faulted
		E087	23.68	28.17	4.49	Highly weathered & friable, inconclusive	287.97	288.61	0.64	Complete intersection
		E086AD2 E120D1	-	-	-	No MR expected - East of MR subcrop No MR expected - East of	255.46	255.71	0.25	Complete intersection
		E120D1 E034D1	-	-	-	MR subcrop No MR expected - East of MR subcrop	292.38	292.97	0.59	Pothole Incomplete intersection, Faulted
		E070	-	-	-	No MR expected - East of MR subcrop	185.15	185.72	0.57	Incomplete intersection, friable & Faulted
		E070D1	-	-	-	No MR expected - East of MR subcrop No MR expected - East of	185.29	186.08	0.79	Incomplete intersection, Faulted
		E114 E034D2	-	-	-	MR subcrop No MR expected - East of	292.74	293.27	0.53	Faulted Incomplete intersection, faulted
		E051	-			MR subcrop No MR expected - East of MR subcrop	95.33	95.80	0.47	Incomplete intersection, Grinding
		E080	-	-	-	No MR expected - East of MR subcrop	188.64	189.12	0.48	Incomplete intersection, Faulted
		E085	-	-	-	No MR expected - East of MR subcrop No MR expected - East of	247.34 263.00	247.91 263.39	0.57	Complete intersection
		EU79			-	MR subcrop No MR expected - East of MR subcrop	263.00 289.62	263.39 289.69	0.39	Incomplete intersection, Faulted Pothole
		E113	-	-						
		E113 E051D1	-	-	-	No MR expected - East of MR subcrop	95.33	96.45	1.13	Complete intersection
		E051D1 E115	-	-	-	No MR expected - East of	87.75	88.55	1.13	Complete intersection
		E051D1	-	-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of			1.13	
		E051D1 E115 E118	-	-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	87.75 288.56	88.55 289.45	1.13 0.80 0.89	Complete intersection Complete intersection

	SECTION 2: REPORT	TING OF EXPLORATION RESULTS
Criteria	Explanation	Detail
	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	A high-definition helicopter borne Total Magnetic Field (TMF) gradient and gamma-ray spectrometry survey was completed by New Resolution Geophysics (Pty) Ltd (NRG) in January of 2022 which highlighted the major structural features that could be expected. The total line kilometres flown was 1,425 lkm over the farms Eerstegeluk 327 KT and Nooitverwacht 324 KT with the survey being flown at a height between 25 m and 80 m due to the topography and residential areas with an average height of approximately 35 m to 40 m and a line spacing of 50 m.
Other substantive exploration data		900 4900 4900 4900 4900 49100 4900 4900
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling).	Phase 1a has been completed which was approximately 10,000m of drilling. This phase tested the wider area for the grade distribution and bigger picture structural understanding. Phase 1b will now focus on the PFS payback area to convert the inferred resource in this area to indicated resources. Deflections are also being drilled for metallurgical and geotechnical studies. The drilling programme is still for approximately 25,000m in total.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	2734000 N 18 19 2734000 N 10 2734000 N 10 10 10 10 10 10 10 10 10 1
		Above are the structural blocks modelled from the drillhole database (UG2 on top and MR the second). The entire area is either in Mineral

SECTION 2: REPORTING OF EXPLORATION RESULTS		
Criteria	Explanation	Detail
		Resource (indicated or inferred) or Exploration Target so there is limited upside potential within the project boundaries.

	SECTION 3: ESTIMA	ATION AND REPORTING OF MINERAL RESOURCES
Criteria	Explanation	Detail
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Geological data in the form of drillhole collar surveys, downhole surveys and geological logs captured on paper records was compared to data captured and saved in soft copy Excel spreadsheets that form the geological repository which informs the modelling database. Any errors, omissions, and invalid transcriptions identified were returned to the exploration team for rectification before the data was processed any further for use in 3D-structural modelling and grade estimation processes.
	Data validation procedures used.	Base geological data informing the estimate was validated using in-built functionality in Datamine StudioRM software. Validation routine involved checking spatial location of drillholes collars and intersections, validity of stratigraphic logging, checking for repetition of logged intersections, reasons for the absence of analytical data, negative thicknesses and an assessment of the correlation of all aspects of the new drilling data to the historic drilling data from the Nkwe drillhole database. The Nkwe database was inspected for erroneous / non representative datapoints and removed based on the knowledge gained from the recent SPD drilling.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Person regularly visits the project site with the latest visit having been carried out on 23 August 2023.
	If no site visits have been undertaken indicate why this is the case.	Refer to above.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The Bengwenyama project is bounded to the northern extremity by a mine that is in current operation and economically exploiting the same UG2 reef. Several SPD drillholes are sited in areas in which similar drilling was completed by Nkwe Platinum during the early 2000s. Geological interpretation as informed from the current SPD holes, correlates reasonably well with interpretation from the historic Nkwe drill data.
	Nature of the data used and of any assumptions made.	The consolidated SPD database informing this estimate incorporates data from historic Nkwe drilling. This data was compiled by transcribing information from documents available in the public domain. Analytical data in the Nkwe drillholes is presented as 4E only. Individual PGEs were not reported. Results from QQ plots (R²=0.93 for the UG2 and R²=0.81 for the MR) suggest that SPD data is highly comparable to the Nkwe data. Accordingly, the data has been consolidated into a single geological database.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Literature from the public domain suggests absence of UG2 reef in the Eerstegeluk Dome area. In contrast, recent SPD drilling (drillhole E057) located within the area, intersected the UG2 reef at a depth of approximately 30m below surface. This implies the SPD drilling in the area is presenting an opportunity to validate the theory or potentially offer an alternative interpretation of this structurally complex area of the project.
	The use of geology in guiding and controlling Mineral Resource estimation.	Contouring of the elevation of the UG2 reef and MR top contact as interpreted from geological logging, knowledge of the regional structural geology, incorporation of mapped faults, dykes, sills, and the use of data from the TMF gradient and gamma-ray spectrometry survey completed by New Resolution Geophysics (Pty) Ltd (NRG) in January of 2022, highlighting the major structural features, guided delineation of 20 fault blocks and culminated in the generation of the associated UG2 3D wireframe model.
	The factors affecting continuity both of grade and geology.	The project area is bisected by faults and several dyke swarms with throws in excess of 200m. Current structural interpretation postulates the Eerstegeluk Dome area comprises a stack of several upthrow faults culminating in an overall upthrow of the UG2 reef to a location as shallow as 30m below surface. Other than potholing observed in the areas limited to the northern periphery, the PGE grades appear unaffected.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Bengwenyama project covers an area of approximately 52.9km ² with a strike of approximately 4km. Data from the Nkwe drillholes suggests a down-dip continuity of UG2 and MR reef over approximately 11km at an average true dip of approximately 6-7°, north-west.

	SECTION 3: ESTIMA	ATION AND REPORTING OF MINERAL RESOURCES
Criteria	Explanation	Detail
		Location of the UG2 reef is shallowest in the south-east corner of the project area at approximately 30m below surface and deepest in the north-west corner where it is in excess of 1,000m below surface. The MR is approximately 260m above the UG2 reef and subcrops in the central portion of the farm Eerstegeluk.
	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	The statistical analysis on the base geological data informing the estimate suggests that no capping or treatment of extreme values is necessary. Owing to the low density of drilling data available to date geological domains, possible facies and anisotropy has not been identified. However, for the MR one sample was capped back to 4.68 g/t for the 4E grade (see below).
Estimation and modelling techniques	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	The Bergwenyama Project is a green field project with no mining activity ever recorded. As such no depletion of Mineral Resources is applicable. The previous estimate for the Bengwenyama Project was declared on 01 July 2021 and presented 33.87Mt at 7.7g/t 4E and 8.38Moz in Inferred Resources. Taking into account the impact of the additional SPD drilling completed to date, the previous estimate correlates reasonably well with the current and updated estimate of 49.85Mt at 7.51g/t 4E and 12.040Moz of Indicated and Inferred Resources for the UG2 with the MR also having very similar results.
	The assumptions made regarding recovery of by-products.	Metallurgical testwork is currently underway to establish the viability of recovery of any by-products, in particular chromite. There is no record of previous similar testwork completed in the Bengwenyama project area. However, the UG2 on the eastern limb of the BC is well known and understood and the average recoveries have been assumed for now.
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average	Other than the base metals Cu, Ni and Fe, no deleterious elements have been identified. The base metals have all been estimated on elemental basis with the Cr:Fe ratio of the UG2 chromitite horizon, from modelled Cr and Fe analysis, observed to be around 1.19. Drillhole spacing is not on a defined grid owing to challenges drilling in populated space. The well drilled areas are typically informed by an average drillhole spacing of approximately 350m with poorly informed areas informed by drilling
	sample spacing and the search employed.	spacing in excess of 1,000m. Kriging neighbourhood analysis (QKNA) recommended a parent block size of 350m (in X and Y directions) with a minimum and maximum number of samples of 5 and 15 respectively for the first search volume which is matched to the range of the 4E modelled variogram (approximately 2,000m). Three search volumes with decreasing samples were used for grade estimation.

Cuitonia		ATION AND REPORTING OF MINERAL RESOURCES
Criteria	Any assumptions behind modelling of selective	A study to test the viability of several possible options and in some cases combinations of mining methods is currently underway. The current modelling does not incorporate guidance from knowledge of any possible proposed mining
Estimation and modelling techniques (continued)	Any assumptions about correlation between variables.	method or selective mining approach. The QQ plot results (R²=0.93 for the UG2 and R²=0.81 for the MR) suggest SPD data is highly comparable to the Nkwe historic drill data. Q-Q Plot Nkwe vs Mincon Data 135 Q-Q Plot Nkwe vs Mincon Da
		Pd, Rh and Au grades from the single analytical 4E grade in the Nkwe drillholes basing on prill splits as established from the complete empirical SPD analytical dataset. The grades for Os, Ir and Ru were then determined from regression relationships enabling the estimation and eventual reporting to 7E grade and including base metals. Major structural discontinuities were identified from interpretation of the TMF gradient and gamma-ray spectrometry survey, field mapping and contouring of elevation of the UG2 reef top contact. Knowledge of regional structural geology and regional geological losses guided delineation of 20 fault blocks and the generation of the resultant UG2 and MR 3D wireframe model.
	Description of how the geological interpretation was used to control the resource estimates.	2734000 N 273400 N 2734000 N 273400 N 2
		Application of results such as the modelled variogram ranges, spatial continuity of kriging efficiencies and the slope of regression results, the sample search volume used and the number of samples informing a grade estimate constrained
	Discussion of basis for using or not using grade cutting or capping.	grade extrapolations beyond known drill data. Statistical analysis on the raw data informing the estimate suggests that no capping or treatment of extreme values is necessary, other than one sample for the MR, and does show reasonable support for geological domaining or any possible anisotropy.

		TION AND R	EPORTING OF MINER	AL RESOUR	RCES		
Criteria	Explanation	Int. ''	and a chi	Detail	and a second	lata i di	(1) (
	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	directions, s grades and as plans sh Regression	grade estimation was val sample-to-model box-wh the visual analysis of gra owing the spatial distribu , Kriging Efficiencies, Se orm grades estimates.	isker plots o ade plans fo ition of the l	on global me or the 4E and JG2 reef thi	eans for all of d 7E grade: ckness, Slo	estimated s as well ope of
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are reported on a dry basis.					
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	are declared 2,654/oz and cut has been progress.	Resource price (USD/oz) Resource price (USD/oz) 2,200 2,000 2,000	and 1.6 g/t 4 UG2 Reef a s the suppor	E using a be not MR resporting geotectrice and page	easket price ectively. No hnical work y limit calcu. Recovery 85% 85%	of USD o mining a is still in
		Ruthenium	465	0.0%	13.0%	71%	55%
		Iridium	4,600	0.0%	2.6%	75%	45%
		Osmium	400	0.0%	1.7%	75%	45%
Mining factors or assumptions	regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	It is envisaged that the Mineral Resource mining cut will be approximately 1m for the UG2 due to the absence of stringers in footprint of the currently drilled area. The hanging wall contact is a distinct Leuconorite plane referred to as the Leuconorite Parting Plane (LPP) and forms a distinct sharp hanging wall contact with no chromitite stringers above it. For the MR the mining cut will probably be the reef width, which is approximately 2,00m plus 10cm hanging wall and 10cm footwall dilution. Mining studies on the possible practical mining methods or a combination thereof are currently being concluded. The current geological modelling does not incorporate any assumptions or provide any form of guidance for a chosen specific mining method.					
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Samples for metallurgical testwork for the UG2 have been collected from site and submitted to the SGS laboratory to establish the most optimal recovery method or a combination thereof. The current geological modelling supporting this estimate does not incorporate any assumptions or provide guidance for a specific recovery method.					
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining	commission chosen min	specialised environment led to establish a balanc ing method to environme traction that will achieve	e between c ental regulat	compliance of ions agains	of the even t optimal ar	tual

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES				
Criteria	Explanation	Detail		
Criteria	reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions			
Bulk density	made. Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within	A density of 3.93 t/m³ for the UG2 and 3.28 t/m³ for the MR was used in the tonnage estimation. The density was determined empirically using the Archimedes method on UG2 reef and MR intersection samples from a population from 45 and 81 diamond drill core samples respectively from 14 SPD drillholes. The determination of density is an ongoing exercise conducted by the field exploration team to expand the database for use to support tonnage estimates. The density was determined empirically using the Archimedes method on UG2 reef and MR intersection samples.		
	the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Not applicable		
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The Mineral Resource categories were determined based on the QAQC, slope of regression (SOR), kriging efficiency (KE) and knowledge of the continuity of the UG2 reef horizon.		

	SECTION 3: ESTIMA	TION AND REPORTING OF MINERAL RESOURCES
Criteria	Explanation	Detail
		2735500 N Legend Lagend Lag
		The Indicated Mineral Resources are based on a SOR greater than 0.6, a KE greater than 0.3, a search volume less than 2.5 as well as application of local knowledge of areas with high confidence in UG2 reef continuity. The Inferred Mineral Resources are based on a SOR of greater than 0.3, extrapolation based on half the distance of the range of the 4E grade variogram with termination onto the major structural discontinuities. The footprint of the Exploration Target Range is extrapolated from the boundary of Inferred Mineral Resources to the project perimeter fence.
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	Geological losses have been applied to the resource to account for the effects of faults, dykes, and potholes. This was estimated by considering the successful drillhole intersections, identified major faults and dykes from the TMF geophysics and additional minor losses. The project area was divided into larger blocks representing various degrees of geological losses. The geological losses for the UG2 range from 16% to 40% for the Exploration Target area with the Eerstegeluk Dome area completely excluded at this stage of reporting. For the MR the geological losses range from 18% to 40% for the Exploration Target area and the top 40m (vertically) at the subcrop for the MR is also excluded due to weathering and oxidation.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The CP is of the opinion that the Mineral Resource classification criteria and associated results are a true reflection of the Bengwenyama orebody and demonstrate the current levels of confidence as informed by drill data. The Mineral Resources estimate, as well as processes associated with
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	estimation work as contained in this press release has been reviewed by an independent third party, Mr. Garth Mitchell, of ExplorMine Consultants (Pty) Ltd. Mr. Mitchell confirms validity and reasonableness of estimate and confirms that due care and diligence was applied in the compilation.
	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such	The QQ plot results (R²=0.93 for the UG2 and R²=0.81 for the MR) suggest the SPD data is highly comparable to the Nkwe historic drill data and that the two datasets can be consolidated into a single database without any issues. The consolidation enabled back-calculation of individual Pt, Pd, Rh and Au grades from the single analytical 4E grade in the Nkwe drillholes basing on prill splits established from the complete empirical SPD analytical dataset as well at determining individual grades for Os, Ir and Ru from regression relationships. This has enabled reporting to 7E grade. The UG2 Exploration Target is based on the estimated kriged value of the
Discussion of relative accuracy/ confidence	an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	drillhole database with a 20% range applied to it.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The CP is of the opinion that geological modelling underlying the estimate contained in this press release is a true reflection of the Bengwenyama orebody and considers the grade and tonnage estimates robust.

	SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES			
Criteria	Explanation	Detail		
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	Not applicable		