

23 October 2024

Bengwenyama Mineral Resource Update: Total (UG2 & MR) Mineral Resource now 40.25Moz Merensky Reef Indicated Resource +17% to 2.23Moz (7E)

Highlights:

- The Merensky Reef Mineral Resource Estimate (MRE) has now been completed. This has resulted in a total combined UG2 and Merensky Reef Mineral Resource ounces (Measured, Indicated and Inferred) for the Bengwenyama Project of 40.25 Moz.
- Merensky Reef Indicated Mineral Resource has increased by 17% to 2.23 Moz (7E).
- The combined Merensky Reef MRE (Measured, Indicated and Inferred) now totals 15.44 Moz
- 54% increase in Merensky Reef Inferred Mineral Resources since the last MRE.
- All MR exploration target estimates have now been converted to Inferred Mineral Resources.
- UG2 footwall mineralisation has now been quantified (~0.71 g/t (7E) over 40cm) and included in the UG2 resource mining cut Mineral Resource for the PFS .
- The PFS is now being finalised for release by the end of October.

Southern Palladium (ASX:SPD and JSE:SDL), 'Southern Palladium' or 'the Company') is pleased to release the latest update which highlights a combined Mineral Resource update for the 70%-owned Bengwenyama Platinum-Group Metal (PGM) Project, including the Merensky Reef on the Eerstegeluk and Nooitverwacht exploration areas. This follows the successful completion of a Pre-Feasibility Study (PFS) drilling campaign and the earlier UG2 Resource upgrade.

Managing Director Johan Odendaal, said: *"We are delighted to be able to report a total contained resource of over 40 million ounces of PGE's in the latest resource upgrade, which incorporates additional resource ounces for the Merensky Reef and follows on from the UG2 resource upgrade in August. The combined Merensky Reef resource estimate now totals 15.44Moz, which resulted in a 14% increase in the total PGE resource to 40.25Moz. These results further underline the status of SPD's 70%-owned Bengwenyama project as a significant resource on the Eastern Limb of the Bushveld.*

Drilling and geotechnical studies have confirmed a stable hanging wall for the UG2 Reef, while the mineralised footwall will enable future mining operations to extract both the main chromitite seam and a portion of the footwall, optimizing the PGE content in the ore. This is an additional 700 koz (7E) in the UG2 Reef's footwall not included in the resource estimation.

Directors are also pleased to announce that the Bengwenyama Pre-Feasibility Study is drawing to a close, with a final report due out at the end of October."

Combined Mineral Resource Update

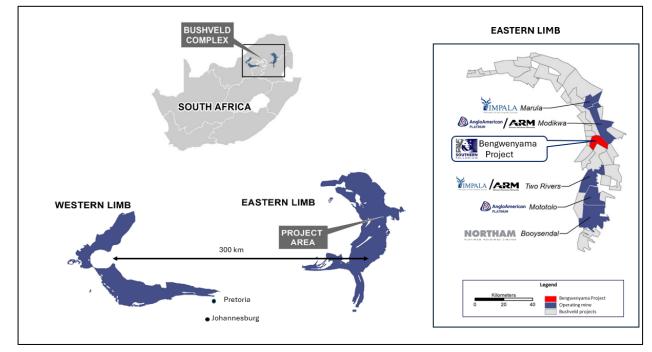


Figure 1: Strategic Positioning of the Bengwenyama Project Amidst Major Platinum Mining Operations

The Merensky Reef (MR) MRE has also been updated with the resource now totalling 15.44Moz. As a number of historic holes did not assay for the minor PGE's a 7E resource can't yet be stated for a portion of the Inferred Mineral Resource.

As shown in the table below, the total combined Mineral Resource (M&I and Inferred) is now 40.25Moz. The Measured and Indicated Mineral Resource for the UG2 and MR on a 7E basis is now 10.39Moz ounces with a combined (7E & 4E) Inferred Mineral Resource of 29.86 Moz. (17.43Moz (7E) for the UG2 and MR + 12.43Moz (4E) for the UG2 and MR). The total combined Mineral Resource for the UG2 and MR as at 23 October 2024 is summarised in Table 1.

					r	-				-	-						
Reef	Resource	Tonnes	Thickness	Pt	Pd	Rh	Au	lr	Os	Ru	4E	7E	Cu	Ni	Moz	Moz	Total
Reel	Category	Mt	(m)		(g/t)							(%)		(4E)	(7E)	Moz ¹	
Merensky	Indicated	25.11	2.02	1.62	0.64	0.10	0.12	0.03	0.03	0.21	2.49	2.76	0.04	0.12	2.01	2.23	2.23
Merensky	Inferred (7E)	62.54	1.81	2.09	0.86	0.14	0.18	0.04	0.04	0.26	3.22	3.55	0.05	0.14	6.47	7.13	7.13
Merensky	Total (7E)	87.66	1.87	1.96	0.80	0.13	0.16	0.04	0.04	0.24	3.01	3.32	0.04	0.13	8.48	9.36	9.36
Merensky	Inferred (4E)	59.44	1.96	2.01	0.93	0.10	0.17				3.18				6.08		6.08
Merensky	Total (4E)	147.10	1.90	1.98	0.85	0.11	0.17				3.08				14.56		15.44
UG2	Measured	7.17	0.77	3.69	3.75	0.76	0.12	0.25	0.17	1.24	8.34	10.00	0.03	0.16	1.92	2.30	2.3
UG2	Indicated	18.52	0.72	3.68	3.63	0.76	0.11	0.26	0.17	1.23	8.19	9.85	0.04	0.16	4.88	5.86	5.86
UG2	Inferred (7E)	33.01	0.69	3.67	3.50	0.76	0.11	0.26	0.17	1.23	8.04	9.70	0.04	0.17	8.54	10.30	10.3
UG2	Total (7E)	58.70	0.71	3.67	3.57	0.76	0.11	0.26	0.17	1.23	8.12	9.78	0.04	0.17	15.33	18.46	18.46
UG2	Inferred (4E)	36.12	1.30	3.00	2.01	0.44	0.07				5.47				6.35		6.35
UG2	Total (4E)	94.82	0.93	3.42	2.98	0.64	0.10				7.11				21.68		24.81
Combined	Total (7E)	146.35	1.40	2.64	1.91	0.38	0.14	0.13	0.09	0.64	5.06	5.91	0.04	0.14	23.81	27.82	
Combined	Total (4E)	241.92	1.52	2.54	1.68	0.32	0.14				4.66				36.24		
Combined To	otal (7E&4E) ¹																40.25

Table 1: Combined UG2 and MR Mineral Resource as at 23 October 2024

Note:

1. Several historic drill holes in the Nooitverwacht Extension area did not assay for the minor PGEs, so a 7E resource cannot yet be stated for part of the inferred Mineral Resource. However, it does contribute to the total resource ounces.

2. All elements have been estimated individually and their combined grade will vary slightly from the estimated composite 4E and 7E modelled grades.

An Inferred Mineral Resource has a lower level of confidence than that applied to an Indicated Mineral Resource and cannot be converted to an Ore Reserve. It is reasonably expected that the majority of the Inferred Mineral Resource could be upgraded to an Indicated Mineral Resource with continued exploration.

SRK Consulting (Pty) Ltd in South Africa have also reviewed the Mineral Resource estimation and have not found any fatal flaws.

Details of the MR Mineral Resource estimation can be found in Appendix 1.

No Measured Resource is declared for the MR at this stage, and additional drilling will be required for that at a later stage. The latest MR upgrade has estimated an Indicated Mineral Resource of 2.23 Moz at a 6PGE + Au grade (7E) of 2.76 g/t respectively over 202 cm. This is a 17% increase in the M&I from the previous MR release.

In addition to the increase in the Indicated Resource, there has been a 54% increase in the MR Inferred Mineral Resource from 8.60 Moz to a combined inferred MR Mineral Resource of 13.21 Moz (7.13 Moz + 6.08 Moz). As per the UG2 Inferred Mineral Resource increase (*refer ASX Announcement 27 August 2024*), this is also largely due to the conversion of the exploration target in the western area of the Project (Nooitverwacht) to an Inferred Mineral Resource arising from the additional historical data sourced.

Table 2 below shows the consolidated MR Mineral Resource as at 23 October 2024. Geological losses have been applied and the MR resource is declared at a pay limit of 1.6 g/t using a 4E basket price of US\$1,969/oz. Importantly, no Mineral Resource falls below the pay limit.

	Tannaa	Reef	Pt	Pd	Rh	Au	lr	Os	Ru	4E	7E	Cu	Ni	(4E)	(7E)	Total ¹
Resource Classification	Tonnes (Mt)	width (cm)		(g/t)								(%)		Moz		
Measured	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Indicated	25.11	2.02	1.62	0.64	0.10	0.12	0.03	0.03	0.21	2.49	2.76	0.04	0.12	2.01	2.23	2.23
Measured & Indicated	25.11	2.02	1.62	0.64	0.10	0.12	0.03	0.03	0.21	2.49	2.76	0.04	0.12	2.01	2.23	2.23
Inferred Eerste. & Nooit. Nth (7E)	62.54	1.81	2.09	0.86	0.14	0.18	0.04	0.04	0.26	3.22	3.55	0.05	0.14	6.47	7.13	7.13
Inferred Nooitverwacht Ext. (4E)	59.44	1.96	2.01	0.93	0.10	0.17				3.18				6.08		6.08
Inferred Combined (4E)	121.98	1.88	2.05	0.89	0.12	0.17				3.20				12.55		
Combined Total (7E&4E) ¹																15.44

Table 2: Merensky Reef Mineral Resource as at 23 October 2024

Note:

1. Several historic drill holes in the Nooitverwacht Extension area did not assay for the minor PGEs, so a 7E resource cannot yet be stated for part of the inferred Mineral Resource. However, it does contribute to the total resource ounces.

2. All elements have been estimated individually and their combined grade will vary slightly from the estimated composite 4E and 7E modelled grades.

Footwall Mineralisation

Geologists have noted the presence of MR footwall mineralisation which is not yet included as more drilling is needed to confirm its distribution. In contrast, the UG2 Reef footwall mineralisation has been confirmed as consistent and has now been estimated and included in a separate resource mining cut estimate, which includes 40cm of mineralised UG2 footwall pyroxenite. This increases both the width of mineralisation and the metal content of the MRE.

UG2 Resource Mining Cut Mineral Resource

The low grade UG2 footwall mineralisation has now been modelled and has been included with the UG2 Resource Mining Cut estimation. The optimal mining width is being determined as part of current PFS and will incorporate dilution by low or nil grade hanging wall and footwall dilution, as is seen in most operations within the Bushveld Complex. The footwall mineralisation has not been modelled for the Nooitverwacht extension which has a higher reef width of ~1.48 m.

The UG2 footwall mineralisation model has been estimated over 40cm (Figure 2) as a separate model and has been combined with the UG2 Reef MRE which has resulted in a Resource Mining Cut model (Figure 3 & Figure 4) to be used in the PFS. From Figure 4 it is evident that the resource UG2 mining cut width does exceed 1m (the expected actual mining cut) so in these wider portions the footwall mineralisation will not be included in the actual mining cut. The footwall model will allow for the low-grade footwall pyroxenite PGE mineralisation to be included in the mining schedule and contribute to the financial model instead of diluting the mining cut at zero grade.

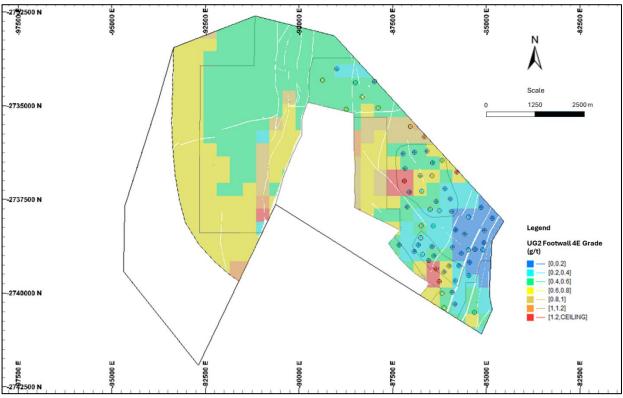


Figure 2: UG2 Footwall 4E Mineralisation Model (g/t)

Figure 3: Resource Mining Cut Estimation Model (4E g/t)

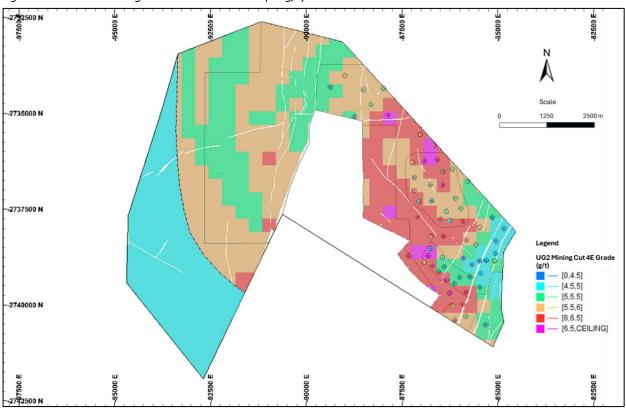
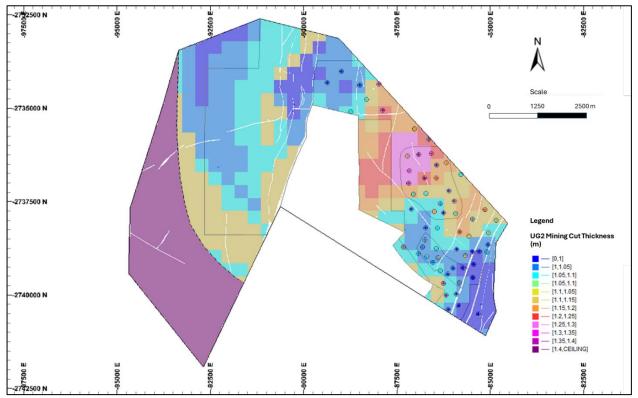



Figure 4: Resource Mining Cut Reef Width Model

The footwall mineralisation, which increases to the west, adds approximately 700 Koz @ 0.71 g/t (7E) to the UG2 reef content over the entire area except for the Nooitverwacht extension which is a wider reef facies and the footwall mineralisation is not understood as yet. The diluted mining cut will be in the region of 5.7 g/t (4E) and 6.9 g/t (7E).

The Mineral Resource diluted for a mining cut for the UG2, excluding the Nooitverwacht extension section, is shown in Table 3.

Resource Classification	Tonnes	Mining Cut	Pt	Pd	Rh	Au	lr	Os	Ru	4E	7E	Cu	Ni	Cr ₂ O ₃	(4E)	(7E)
	(Mt)	(m)	(g/t)								(%)			Moz		
Measured	10.24	1.16	2.64	2.73	0.55	0.09	0.18	0.12	0.89	6.01	7.20	0.03	0.14	21.52	1.98	2.37
Indicated	26.93	1.11	2.60	2.56	0.54	0.08	0.18	0.12	0.87	5.78	6.96	0.03	0.14	21.19	5.00	6.02
Measured & Indicated	37.17	1.12	2.61	2.60	0.55	0.08	0.18	0.12	0.88	5.84	7.03	0.03	0.14	21.28	6.98	8.40
Inferred Eerste. & Nooit, Nth (7E)	48.63	1.08	2.58	2.46	0.54	0.07	0.18	0.12	0.87	5.66	6.83	0.03	0.14	20.69	8.84	10.67
Inferred Nooitverwacht Ext. (4E)	39.97	1.36	2.74	1.84	0.40	0.07				5.01					6.43	
Inferred Combined (4E)	88.60	1.21	2.65	2.18	0.48	0.07				5.36					15.28	

Table 3: UG2 Resource Mining Cut Mineral Resource

Upcoming PFS

The PFS remains on track for completion and lodgement by the end of October.

This announcement has been approved for release by the Board of Southern Palladium Limited.

About Southern Palladium:

Southern Palladium Limited (ASX: SPD, JSE: SDL) is a dual-listed platinum group metals (PGM) company focused on advancing the Bengwenyama PGM project, located in South Africa. This project, situated on the Eastern Limb of the Bushveld Complex, boasts a rich abundance of platinum, palladium, rhodium and other minor metals which are key components in the PGM market. The Bushveld Complex is renowned for hosting over 70% of the world's known PGM resources, making Bengwenyama strategically positioned for significant development.

With a 70% ownership stake in the project, the company's primary objective is to advance the Pre-Feasibility Study. Additionally, key milestones include the completion of a geophysical survey, completed in 2022; the submission of a Mining Right application in September 2023 and Environmental Impact Assessment ("EIA") report submitted on July 10, 2024.

A diamond drilling program was initiated in August 2022, alongside various concurrent technical studies, which are being incorporated into the PFS phase in 2024. Bengwenyama represents a compelling opportunity in the global PGM market.

Guided by a seasoned management team with extensive on-ground experience, including notable figures from South Africa's mining industry, Southern Palladium Limited is poised to unlock the full potential of the Bengwenyama project and deliver substantial value to its stakeholders.

Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results and Mineral Resources is based on information compiled by Mr Uwe Engelmann (BSc (Zoo. & Bot.), BSc Hons (Geol.), Pr.Sci.Nat. No. 400058/08, FGSSA). Mr Engelmann is a director of Minxcon (Pty) Ltd and a member of the South African Council for Natural Scientific Professions. Minxcon provides geological consulting services to Southern Palladium Limited. Mr. Engelmann has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Engelmann consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Engelmann has a beneficial interest in Southern Palladium through a shareholding in Nicolas Daniel Resources Proprietary Limited.

For further information, please contact:

Johan Odendaal Managing Director Southern Palladium Phone: +27 82 557 6088 Email: johan.odendaal@southernpalladium.com

Media & investor relations inquiries: Sam Jacobs, Six Degrees Investor Relations: +61 423 755 909

Follow @SouthernPalladium on Twitter

Follow Southern Palladium on LinkedIn

Appendix 1. Merensky Reef Estimation

Merensky Reef Estimation

An additional 10 drillholes from the recent SPD drilling campaign (which are in table 1) were used in the MR modelling. In addition to this, the additional historical Anglovaal drillholes (refer ASX Announcement 27 August 2024) were used in the Nooitverwacht extension simple krige model for the Inferred Mineral Resource over the Nooitverwacht extension. The Anglovaal MR drillhole data is detailed in Table 4.

	v	Y	7			Thickness	Pt	Pd	Rh	Au	4E
BHID	Х	T	Z	REEF_FROM	REEF_TO	(m)	(g/t)	(g/t)	(g/t)	(g/t)	(g/t)
BK1D0	-93871.00	-2746009.00	-481.07	1346.63	1349.50	2.87	1.59	0.79	0.10	0.06	2.54
BK1D2	-93871.00	-2746009.00	-481.18	1346.78	1349.58	2.80	1.83	0.82	0.11	0.13	4.77
BK1D3	-93871.00	-2746009.00	-481.13	1346.74	1349.52	2.78	1.56	0.79	0.09	0.14	2.57
BK1D4	-93871.00	-2746009.00	-481.13	1346.75	1349.51	2.76	1.29	0.66	0.06	0.18	2.20
BK2D0	-92838.00	-2744076.00	-414.56	1354.41	1356.71	2.30	0.88	0.29	0.04	0.06	1.28
BK3D0	-93008.00	-2742404.00	-274.05	1762.78	1763.31	0.53	1.97	1.02	0.03	0.29	3.32
BK3D2	-93008.00	-2742404.00	-273.72	1762.17	1763.26	1.09	2.25	1.47	0.00	0.08	3.80
BK3D3	-93008.00	-2742404.00	-274.05	1762.55	1763.54	0.99	4.30	1.29	0.03	0.34	5.96
BK4D0	-94248.00	-2744589.00	-426.20	1783.80	1786.60	2.80	2.14	1.48	0.20	0.16	3.98
BK4D2	-94248.00	-2744589.00	-426.15	1783.89	1786.40	2.51	1.99	0.86	0.03	0.19	3.07
BK4D3	-94248.00	-2744589.00	-426.40	1784.18	1786.62	2.44	2.64	1.79	0.01	0.36	4.80
BK4D4	-94248.00	-2744589.00	-425.34	1782.84	1785.84	3.00	3.57	1.86	0.17	0.31	5.91
BK5D2	-92713.00	-2743947.00	-401.97	1366.03	1367.91	1.88	2.22	1.06	0.00	0.21	3.49
BK6D10	-93537.00	-2742830.00	-283.10	1685.38	1686.82	1.44	0.79	0.39	0.00	0.04	1.22
BK6D7	-93537.00	-2742830.00	-283.09	1685.26	1686.91	1.65	0.95	0.35	0.00	0.04	1.34
BK6D8	-93537.00	-2742830.00	-283.25	1685.53	1686.96	1.43	1.24	0.60	0.04	0.07	1.95
MM1D0	-94698.00	-2748412.00	-874.02	1715.51	1718.53	3.02	1.76	1.01	0.03	0.18	2.98
MM1D1	-94698.00	-2748412.00	-873.78	1715.10	1718.45	3.35	2.55	2.37	0.13	0.10	5.15
MM1D2	-94698.00	-2748412.00	-873.95	1715.55	1718.35	2.80	2.16	1.10	0.06	0.19	3.51
MM1D3	-94698.00	-2748412.00	-873.74	1715.20	1718.28	3.08	1.25	1.01	0.06	0.19	2.51
MM1D4	-94698.00	-2748412.00	-873.87	1715.31	1718.42	3.11	2.04	0.91	0.12	0.26	3.33
SPA2D3	-95607.00	-2738195.00	-70.65	1742.61	1744.69	2.08	2.27	1.17	0.09	0.21	3.78
SPA2D4	-95607.00	-2738195.00	-70.59	1742.69	1744.48	1.79	0.74	0.24	0.00	0.02	1.02
SRD1D0	-97726.00	-2737258.00	-196.32	1581.39	1583.24	1.85	3.49	2.41	0.21	0.46	6.57
SRD1D11	-97726.00	-2737258.00	-196.62	1581.85	1583.39	1.54	1.68	0.73	0.07	0.06	2.67
SRD1D12	-97726.00	-2737258.00	-196.27	1581.55	1582.99	1.44	3.25	1.54	0.16	0.45	5.40
SRD1D9	-97726.00	-2737258.00	-196.49	1581.78	1583.19	1.41	2.70	1.15	0.12	0.09	4.06

Table 4: Historical Anglovaal (4E) Drillhole Data Details

The consolidated MR database comprises a total of 38 drillholes comprising 18 drillholes from the SPD campaign, 11 drillholes from the Nkwe drilling database and 9 drillholes from the Anglovaal drilling database. Only 21 drillholes from the SPD campaign present full representative Merensky Reef intersections with the remaining 17 having been affected by faulting, potholing, dykes or weathering. In field mapping and incorporation of additional datasets provided improvement in constraint of the MR sub-crop position. Figure 5 shows the location of the drillholes that intersected the MR.

Figure 5: Spatial Distribution of drillholes with MR Intersections

Merensky Reef (MR) Mineral Resource Estimation

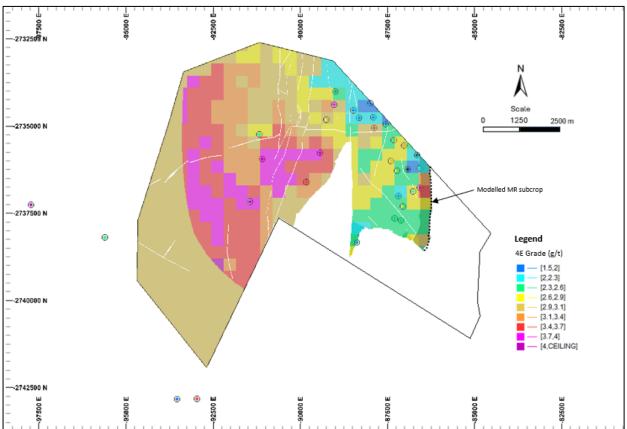
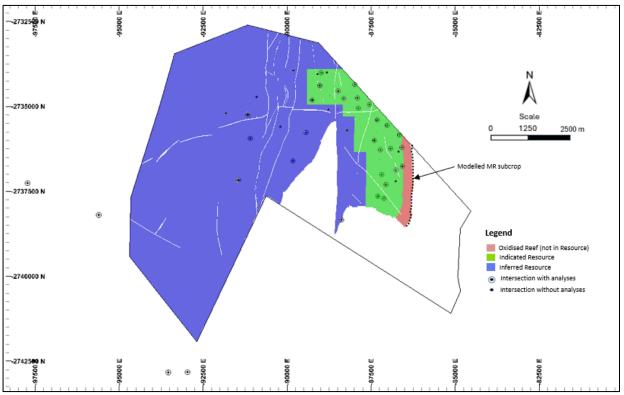

The MR geological and estimation models have been updated to include drilling and assaying data as at end of April 2024. The estimation model utilised 11 historical Nkwe drillholes and 18 SPD drillholes. The Nooitverwacht extension was estimated using simple kriging and used 9 drillholes.

Figure 6 shows the 3PGE+Au g/t resultant model with the drillhole positions used in the estimation. The statistical analysis showed that capping of one anomalous drillhole (E121D1) was required for the estimation. The kriging neighbourhood analysis (KNA) recommended a block size of 350m with a minimum and maximum number of samples of 5 and 15 respectively for the first search volume. Three search volumes with decreasing samples were used for the estimation.

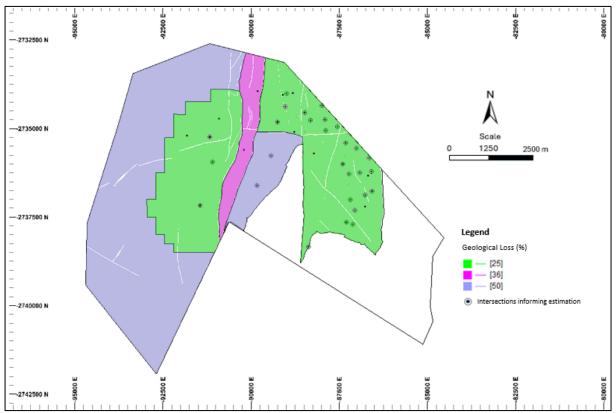
All elements (Pt, Pd, Rh, Au, Ir, Os, Ru, Cu, Ni, Cr and Fe) were estimated individually as well as a combined 4E (Pt, Pd, Rh & Au) and 7E (Pt, Pd, Rh, Ir, Os, Ru & Au). The average 4E prill splits for Pt:Pd:Rh:Au of 64.3% : 26.2% : 4.2% : 5.3% were determined using these estimates.

The SPD campaign has provided 213 records, determined empirically from Merensky reef intersections using the Archimedes methodology. As such, unlike in previous estimates where a single density of 3.28 t/m^3 was used, this update utilises density modelled through Ordinary Kriging for all tonnage estimation.


Figure 6: Modelled 3PGE+Au g/t Plot of the MR Reef

Mineral Resource Categories

The Mineral Resource categories for the MR (Figure 7) were determined based on the data quality, QAQC, geological confidence of the various fault blocks, drillhole spacing, slope of regression (SOR) and continuity of the MR horizon. The extrapolated inferred portion of the Inferred Mineral Resource is 46% which makes up a large portion of the inferred in the Nooitverwacht extension. Figure 7 also shows the weathered area (oxide) down to 40m vertical depth, which has been excluded from the Mineral Resources.


Figure 7: MR Mineral Resource Categories

Geological Losses

Geological losses have been applied to the resource to account for the effects of faults, IRUPs and potholes on the MR Reef. The dykes have been mapped and removed from the model itself. These are geological features common throughout the reefs of the Bushveld Intrusive Complex. The losses are estimated by considering the successful drillhole intersections, major identified faults and dykes from the geophysics and assumed additional minor fault losses. The project area was divided into larger blocks representing various degrees of geological losses that range from 25% and 36% for the various fault blocks within the indicated and inferred Mineral Resource and 50% for the extrapolated inferred resource portion and dome structure area (Figure 8).

Figure 8: MR Reef Geological Losses (%)

Appendix 2. JORC Checklist – Table 1 Assessment and Reporting Criteria

		IPLING TECHNIQUES AND DATA
Criteria	Explanation	Detail
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	20 cm samples are taken within the reef horizon unless there is a lithological reason to deviate from this. A single sample is also taken in the hanging wall and footwall to test for mineralisation in the direct waste rock. The samples are split with a core saw and one half is submitted to the laboratory and the other half keep in the core tray.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The core is orientated in such a way that the two halves are equal.
Sampling techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The sampling methodology is standard and as per industry practice in the Bushveld Complex (BC). The samples are 20 cm in length and are split into two equal halves with one half being submitted for analysis. The core size starts as HQ (10 m to 50 m) but is NQ by the time the reef is intersected.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method,	The drillholes start with HQ (for approximately 10-50 m) in the weathered zone but are then drilled NQ once in the fresher material. The drill rigs that were utilised have been the CS 1500, Delta 520 and a smaller Longyear 44. The drill contractor is Geomech Africa.
	etc.). Method of recording and assessing core and chip sample recoveries and results assessed.	Initially the core was scanned in with the software ScanIT which scans the core with high resolution photos and the geologists reconcile the depths and core losses per 3 m run. The Core recoveries and RQD are then calculated for the drillhole. ScanIT has however been discontinued and the core is now photographed and the core recovery and RQD is calculated manually by the geological assistants.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The geologist informs the drilling supervisor at what depth the reef is expected so that they can take extra precautions around the anticipated reef depth. The core recoveries are measured per 3 m run and if there is excessive core loss in the reef horizon it is marked as a non-representative sample and will not be used in the resource estimation process.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The core recoveries for the intersections submitted to the laboratory are all above 98%. If the core loss is excessive the sample is not submitted to the laboratory for Mineral Resource estimation purposes. Therefore, there will not be any sample bias due to poor recoveries.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	The core was initially scanned into ScanIT software which produced high resolution images. This has however been discontinued. The logging is conducted on paper log sheets or tablets at the core yard with dropdown menus. Legends have been set up in excel that cover the necessary detailed required for Mineral Resource estimation. Alpha angles and structure detail is also observed and logged. The beta angle is not measured as the core is not orientated but the downhole televiewer survey supplies structural orientation information which is incorporated into the logs.

Criteria	SECTION 1: SAM Explanation	IPLING TECHNIQUES AND DATA Detail
Criteria	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Core logging is qualitative and utilises excel spreadsheets on tablets.
	The total length and percentage of the relevant intersections logged.	The total drillhole is geologically logged and photographed and the televiewer survey is conducted from 100 m above the reef horizon for additional structural information.
	If core, whether cut or sawn and whether quarter, half or all core taken.	The core is cut in two equal halves for sampling and storage purposes.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	This project only makes use of core drilling.
	For all sample types, the nature, quality and appropriateness of the sample	The sample preparation code at ALS is PREP-31H which has the following procedure: -
Sub compling	preparation technique.	Login of samples into the system, weighing, fine crushing of entire sample to 70% - 2 mm, split off 500 g and pulverize split to better than 85% passing 75 microns.
Sub-sampling techniques and		The QAQC sequence is as follows: -
sample preparation	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	If the batch is less than 20 samples the batch starts and ends with a blank and a CRM and duplicate are inserted into the sample stream. If the batch is great than 20 samples then the batch starts and ends with a blank and every tenth sample is either a CRM, duplicate or blank. This equates to between 20% and 10% QAQC samples.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	The sampling of the reef is reef material only except for the first and last sample of the reef as it will have 2 cm of hanging wall or footwall material to ensure the entire mineralisation is captured. This 2 cm dilution will be calculated into the reef width. The hanging wall and footwall are sampled separately to the reef. Hence the reef samples are representative of the <i>insitu</i> reef horizon. Requested duplicates are pulp duplicates and the CRMs are material from the UG2 and MR from African Mineral Standards (AMIS).
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The reef horizon is sampled in 20 cm increments so that the grade distribution can be observed if a mining cut is required. The UG2 reef is approximately 70 cm wide and will have three to four samples which will be composited later. The MR is wider at around 200 cm and will have about ten individual samples to determine the grade distribution. These will also be composited later for Mineral Resource Estimation purposes. Hanging wall and footwall samples are also taken to check if there is any mineralisation in the direct surrounding waste rock.
		This is industry best practice for the BC.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The UG2 reef will be assayed for 4E and 7E as well as for Cu, Ni, Co, Cr and Fe. The MR will be assayed for the same except the Cr and Fe as it is not a chromitite seam but a pyroxenite layer.
Quality of assay data		The ALS methods are as follows: - PGM-ICP23 - Pt, Pd, Au package using lead fire assay with ICP-AES finish. 30 g nominal sample weight. Rh-ICP28 - Fire assay fusion using lead flux with Pd collector for Rh determination by ICPAES. 10 g nominal sample weight. PGM-MS25NS - The Platinum Group Metals are separated from the gangue material using the Nickel Sulphide Fire Assay procedure. After dissolution of the pulp with aqua regia, PGMs are determined by ICP-MS. ME-XRF26s - Analysis of Chromite ore samples by fused disc / XRF. This method is suitable for the determination of major and minor elements in ore samples which require a high dilution digest such as Chromite ores. Elements that will be analysed are Cr, Cu, Ni, Fe and Co.
and laboratory tests		The overall pass rate of the various QAQC samples is 90%.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations	All methodologies are total. All analytical work is undertaken by ALS Chemex South Africa (Pty) Ltd, located in Johannesburg, which is part of the ALS group. The South African laboratory is ISO 17025 accredited by SANAS (South African National Accreditation System).
	factors applied and their derivation, etc.	The historical Anglovaal samples were sent to the Anglovaal Research Laboratory (AVRL), which was located in Florida, South Africa when it existed, for analysis.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	QAQC procedure has been described above. In addition to the QAQC samples the analytical methodologies are also correlated with each other i.e. PGM-ICP23 and RH-ICP28 is compared to PGM-MS25NS. There is a good correlation and on average are within 1 - 2% of each other over the 4E grade.

Oritoria		IPLING TECHNIQUES AND DATA
Criteria	Explanation	Detail
	The verification of significant intersections by either independent or alternative company personnel.	Two umpire laboratories were used, Suntech and Mintek. The umpire samples showed good correlation for the overall 4E grades as well as the individual elements for the prill splits.
Verification of	Discuss any adjustment to assay data.	No adjustments have been made to the assayed results.
sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	The assay results are received from the laboratory in pdf format and excel format. The excel form is imported into the Minxcon excel database. These are checked by the senior geologist. The assay certificates are stored in the project folder.
	The use of twinned holes.	No twinning has been undertaken to date. However, statistics was utilised to confirm that the Nkwe dataset and new SPD dataset can be combined.
Location of data	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drillhole collar positions are initially recorded by handheld Garmin GPS. Drillhole collar survey was conducted by Aero Geomatics (Pty) Ltd. All completed drillholes were surveyed by post-processing Kinematic methodology. ("PPK"). The accuracy of PPK is 5 mm + 0.5 ppm horizontally and 10 mm + 1 ppm vertically. The survey was based on the World Geodetic System 1984 ellipsoid, commonly known as WGS84.
points	Specification of the grid system used.	The coordinate system used is LO31.
	Quality and adequacy of topographic control.	Regional three-dimensional (3D) topography was constructed from regional surface contours and Shuttle Radar Topography Mission (SRTM) data. The surface was trimmed 300–500 m beyond the Project perimeter. A Lidar DTM will however be flown for the mining studies.
	Data spacing for reporting of Exploration Results.	The final drillhole spacing will be between 200 m and 350 m. There could be gaps in this grid if there is sufficient confidence in the structure of the fault / structural block.
Data spacing and distribution	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Geological continuity is based on the knowledge of the surrounding area and 3D model constructed from historical data. 82 drillholes and 50 deflections have been completed confirming the position of the UG2 and Merensky reefs. The total drilling meters is 30,746m.
	Whether sample compositing has been applied.	The 20cm (or larger) samples are composited to obtain the weighted average of the entire intersection.
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drillholes are vertical drillholes and intersect the reef close to right angles. The sample is therefore unbiased. If the reef is faulted it will be noted and if the reef intersection is not representative, it will not be used in Mineral Resource estimations.
relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias will be introduced based on the drilling orientation as they are close to perpendicular.
Sample security	The measures taken to ensure sample security.	Samples are only handled by the drilling contractor and the Minxcon geological staff. There is a strict chain of custody that is followed from the time the core leaves the drill site to the time the sample is received by the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	An audit on the exploration processes and geological interpretations was undertaken by Dr. Richard Hornsey from Richard Hornsey Consulting (Pty) Ltd from 17 to 19 January 2024. No issues were identified in terms of the procedures and data but valuable geological input around the geology of the dome structure was supplied. Additional historical Anglovaal drilling data was shared by Dr. Richard Hornsey with SPD for the utilisation in the geological interpretation, 3D modelling and estimation of the Nooitverwacht area.

	SECTION 2: REPORTING OF EXPLORATION RESULTS								
Criteria	Explanation	Detail							
	Type, reference name/number, location	A Preferent Prospecting Right LP002PPR was granted to the							
	and ownership including agreements or	Bengwenyama Tribe's investment vehicle, Miracle Upon Miracle							
Mineral tenement	material issues with third parties such	Investments (Pty) Ltd in 2015 over the farms Eerstegeluk 327 KT and							
and land tenure	as joint ventures, partnerships,	Nooitverwacht 324 KT. This was renewed in early 2021 and is valid until							
status	overriding royalties, native title	February 2024. The Right covers all elements of potential economic							
Status	interests, historical sites, wilderness or	interest. The Prospecting Right has expired but an application for a							
	national park and environmental	Mining Right has been submitted to the DMRE for the two properties							
	settings.	and an acceptance letter has been received.							

	SECTION 2: REPOR	TING OF EXPLORATION RESULTS
Criteria	Explanation	Detail
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The right was valid until February 2024. However, the application for the Mining Right has begun and is in progress.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Drilling was undertaken by Rustenburg Platinum Mines from 1966 to 1985. Trojan exploration completed drilling on Eerstegeluk between 1990 and 1993. Drilling prior to 1994 was not used as part of this Mineral Resource estimate (MRE) due to the incomplete nature or availability of the drillhole data. Nkwe completed drillholes in 2007– 2008. This drilling supports the MRE. Reconnaissance mapping has been completed by previous operators. However, new historical drilling data from 1988 to 1991 from Anglovaal has been discovered through Dr. Richard Hornsey and has been utilised in the estimation of the Nooitverwacht extension inferred Mineral Resource. The drilling that was completed was a joint venture between Anglovaal through Midvaal Mining Company and Severin Mining and Development Company (Pty) Ltd.
Geology	Deposit type, geological setting and style of mineralisation.	The target UG2 and Merensky reefs occur within the Upper Critical Zone of the Rustenburg Layered Suite of the BC. These reefs are laterally continuous for tens to hundreds of kilometres. The UG2 comprises mineralised chromitite, whereas the Merensky Reef is defined as the mineralised pyroxenitic zone between upper and lower chromitite stringers. The BC is the world's largest igneous intrusion and also the largest global repository of PGEs and chromitite. Both reefs are stratiform with relatively minor disruptive structural features and replacement deposits.

	A summary of all information		North	Easting	Flouretin	Din Andress	Drill		Drilled Metres	
	material to the understanding of the	BHID E001	-87997	G31 -2734366	m 856	• • -90	m 0 0.00	To m 554.75	m 554.75	Comment EOH, completed
	exploration results including a tabulation of the following	E001D1 E003	-87997 -87886	-2734366 -2735050	856 841	-90	0 508.00 0 0.00	552.02 563.75	563.75	EOH, Completed EOH, Completed EOH, completed
	information for all Material drillholes:	E004 E004D1 E007	-87545 -87545 -87016	-2734954 -2734954 -2735561		-90 -90	0 0.00 0 457.00 0 0.00	524.50 518.75 422.80	61.75	EOH, completed Deflection completed EOH, completed
	* easting and northing of the drillhole collar	E010 E010D1	-86653 -86653	-2735835 -2735835	815 815	-90 -90	0 0.00 0 301.00	365.90 363.96	365.90 62.96	EOH, Completed EOH, Completed
	* elevation or RL (Reduced Level –	E010D2 E011 E011D1	-86653 -86918 -86918	-2735835 -2736242 -2736242		-90	0 295.00 0 0.00 0 74.00	365.90 407.75 100.00	407.75	EOH, Completed EOH, Completed EOH, Completed
	elevation above sea level in metres)	E011D2 E013	-86918 -86433	-2736242	815		0 68.00		30.75	EOH, Completed EOH, completed
	of the drillhole collar * dip and azimuth of the hole	E014 E014D1	-86585 -86585	-2736211 -2736211	811	-90	0 0.00	354.10 344.04	42.04	EOH, completed EOH, Completed
	* down hole length and interception	E014D2 E015 E016	-86585 -86175 -87176	-2736211 -2736459 -2736677	811 801 812	-90	0 292.00 0 0.00 0 0.00	346.55 298.72 454.68	298.72	EOH, Completed EOH, completed EOH, completed
	depth	E017 E019	-87228 -86451	-2736278 -2736870	820 802	-90 -90	0.00	461.65 32.42	461.65	EOH, Completed Abandoned
	* hole length.	E019a E020	-86446 -86719 -85783	-2737286		-90	0 0.00 0 0.00 0 0.00	323.77 350.75 249.05	350.75	EOH, completed EOH, completed
		E021 E021D1 E021D2	-85783 -85783	-2736771 -2736771 -2736771		-90	0 203.00	249.03 247.00 247.00	44.00	EOH, Completed EOH, Completed EOH, Completed
		E021D3 E024 E025	-85783 -86103 -85961	-2736771 -2737214 -2737488	790 799 793		0 187.00 0 0.00 0 0.00	247.55 284.75 267.58	284.75	EOH, Completed EOH, completed
		E025 E027 E028	-86336 -86763		793	-90	0 0.00	290.75	290.75	EOH, completed EOH, completed EOH, completed
		E029 E029D1	-86619 -86619	-2737663 -2737663	789 789	-90	0 0.00 0 248.00	320.78 320.78	320.78 72.78	EOH, Completed EOH, Completed
		E030 E031 E032	-87118 -87055 -87186	-2737304	798 800 807		0.00 0.00 0.00 0.00	413.75 423.22 467.75	423.22	EOH, completed EOH, completed EOH, Completed
		E033 E034	-85929 -86501	-2737822 -2737763	784 787	-90 -90	0.00	261.58 298.38	261.58 298.38	EOH, completed EOH, Completed
		E034D1 E034D2 E035	-86501 -86501 -85755	-2737763 -2737763 -2738095	787		0 232.00 0 227.00 0 0.00	296.88 296.51 260.62	69.51	EOH, Completed EOH, Completed EOH, Completed
		E035D1 E036	-85755 -86252	-2738095 -2737800	773		0 213.00	257.62 276.47	44.62	EOH, Completed EOH, Completed EOH, Completed
		E036D1 E036D2	-86252 -86252	-2737800 -2737800	781 781	-90 -90	0 231.00	273.47 277.97	42.47 52.97	EOH, Completed EOH, Completed
		E036D3 E037 E039	-86252 -86265 -87036	-2737800 -2738275 -2738502		-90	0 219.00 0 0.00 0 0.00	282.45	282.45	EOH, Completed EOH, completed EOH, Completed
		E039D1 E041	-87036 -86452	-2738502 -2738759	781 768	-90 -90	0 166.00 0 0.00	229.23 258.77	63.23 258.77	EOH, Completed EOH, completed
		E043 E043D1 E043D2	-86097 -86097 -86097	-2738943 -2738943 -2738943	767	-90	0 0.00 0 193.00 0 182.00	266.14 263.00 263.89	70.00	EOH, Completed EOH, Completed EOH, Completed
		E044 E045	-86399 -86703	-2739001	774	-90	0.00	263.73 206.55	263.73 206.55	EOH, completed EOH, Completed
		E046 E048	-86818 -85474		769	-90	0.00		245.68 236.70	EOH, Completed EOH, Completed
		E049 E050 E050D1	-85950 -85990 -85990	-2739599 -2739275 -2739275	769 768 768	-90	0 0.00 0 0.00 0 185.00	322.75 193.31 279.98	193.31	EOH, completed, extended to UG1 for Abandoned due to lost equipment EOH, Completed
		E051 E051D1	-86256 -86256	-2739690 -2739690	774	-90 -90	0 0.00	105.56 99.36	105.56 49.36	EOH, Completed EOH, Completed
		E052 E054 E056**	-86338 -85732 -87026	-2739349 -2739268 -2739473	774 762 784		0 0.00 0 0.00 0 0.00	252.55 287.57 335.70	287.57	EOH, Completed EOH, Completed EOH, Completed
llhole		E050 E057** E058	-87351 -86128		789	-90	0.00	299.68	299.68	EOH, Completed EOH, completed EOH, completed
prmation		E059 E060	-85913 -85837	-2739975 -2740293	770 -	-90	0.00	99.55 206.72	99.55 206.72	EOH, Completed EOH, completed
		E060D1 E062 E062D1	-85837 -86184 -86184		775	-90 -90 -90	0 139.00 0 0.00 0 18.30	185.53 120.34 34.92		EOH, completed EOH, completed, extended to UG1 for Deflection completed, faulted UG2
		E062D2 E064	-86184 -84844	-2740003 -2738000	775 749	-90 -90	0 13.30 0 0.00	33.00 166.40	19.70 166.40	Deflection completed, faulted UG2 EOH, completed
		E065 E066 E066D1	-85573 -85299 -85299	-2738426 -2738831 -2738831			0 0.00 0 0.00 0 161.00	239.75 225.32 225.62	225.32	EOH, completed EOH, Completed EOH, Completed
		E067 E069		-2739534 -2740512	760			306.45 305.45	306.45	EOH, completed EOH, Completed
		E069D1 E070	-85315 -85144	-2737715	763	-90	0 180.00	191.90	191.90	EOH, Completed EOH, Completed
		E070D1 E071 E072	-85144 -85049 -85670	-2737715 -2738331 -2738947	763 749 759	-90	0 125.00 0 0.00 0 0.00	188.80	188.80	EOH, Completed EOH, completed EOH, Completed
		E072D1 E072D2	-85670 -85670	-2738947 -2738947	759 759	-90 -90	0 208.00 0 203.00	251.75 251.75	43.75 48.75	EOH, Completed EOH, Completed
		E076 E077 E077D1	-85482 -85821 -85821	-2738844 -2738313 -2738313	755 769 769	-90	0 0.00 0 0.00 0 191.00		264.22	EOH, Completed EOH, Completed EOH, Completed
		E079 E080	-85446 -85065	-2739178 -2738654	756 746	-90 -90	0.00	270.13 195.17	270.13 195.17	EOH, Completed EOH, Completed
		E082 E082D1	-85905 -85905	-2738776 -2738776	760 760	-90 -90	0 0.00 0 177.00	248.90 245.90	248.90 68.90	EOH, Completed EOH, Completed
		E085 E086 E086A	-86750 -86127 -86130	-2738523 -2739438 -2739442	776 770 770	-90	0 0.00 0 0.00 0 0.00	251.90 68.75 260.75	68.75	EOH, Completed Abandoned due to lost equipment EOH, Completed
		E086AD1 E086AD2	-86130 -86130	-2739442 -2739442	770	-90 -90	0 195.00 0 190.00	259.75 257.75	64.75 67.75	EOH, Completed EOH, Completed
		E087 E091 E091D1	-86730 -85179 -85179	-2738203 -2740650 -2740650	782 752 752	-90	0 0.00 0 0.00 0 190.00	294.37 350.75 275.00	350.75	EOH, Completed EOH, Completed EOH, Completed
		E092 E100	-85027 -88989	-2740115 -2734027	750 895	-90 -90	0.00	360.05 503.35	360.05 503.35	EOH, Completed EOH, Completed
		E101 E101D1	-88735 -88735	-2735092 -2735092	860 · 860 ·	-90	0 0.00 0 460.00	507.40 510.40	507.40 50.40	EOH, Completed EOH, Completed
		E105 E113 E114	-89028 -87934 -87909	-2736913 -2738339 -2738842	832 793 796		0.00 0.00 0.00 0.00	744.08 497.60 101.68	497.60	EOH, Completed EOH, Completed EOH, Completed
		E115 E117	-87331 -85092	-2738719 -2738849	788 746	-90 -90	0.00	93.30 225.00	93.30 225.00	EOH, Completed EOH, Completed
		E118 E119 E120	-85830 -89586 -86593	-2739673 -2737994 -2739333	768 850 777	-90	0 0.00 0 0.00 0 0.00	294.18 809.85 218.68	809.85	EOH, Completed EOH, Completed EOH, Completed
		E120D1 E121	-86593 -89429	-2739333 -2735773	777 871	-90 -90	0 95.00 0 0.00	182.68 515.79	87.68 515.79	EOH, Completed Abandoned due to lost equipment
		E121D1 E122	-89429 -86925	-2735773 -2738886	871 782	-90 -90		185.70	202.56	EOH, Completed EOH, Completed
		E124 E124D1 E125	-86874 -86874 -86540	-2737771 -2737771 -2739132	793 793 776		0 0.00 0 290.00 0 0.00	356.65 356.65 233.75		EOH, Completed EOH, Completed EOH, Completed
		E125D1 E126	-86540 -86419	-2739132 -2738207	776	-90 -90	0 168.00 0 0.00	233.75 268.42	65.75 268.42	EOH, Completed EOH, Completed
		E126D1 E126D2	-86419 -86419	-2738207 -2738207		-90	0 203.00 0 195.45	268.25 268.00	65.25 72.55	EOH, Completed EOH, Completed
		E126D3 E128 E128D1	-86419 -88317 -88317	-2738207 -2734759 -2734759	773 858 858	-90	0 189.00 0 0.00 0 490.00	536.75	536.75	EOH, Completed EOH, Completed EOH, Completed
		E128D2 E130	-88317 -88491	-2734759 -2734387	858 869	-90 -90	0 484.00 0 0.00	533.75 506.65	49.75 506.65	EOH, Completed EOH, Completed
		E130D1 E130D2 E131	-88491 -88491 -89026	-2734387 -2734387 -2734386	869 869 885	-90	0 441.00 0 435.00 0 0.00	505.00	70.00	EOH, Completed EOH, Completed EOH, Completed
		E131	-89026	-2734386	885			497.75	497.75	EOH, Completed
		E131D1 E132	-89026 -89652	-2734386 -2734972	885 877 894	-90	0 429.00 0 0.00	494.75 749.55	749.55	EOH, Completed EOH, Completed EOH, Completed

		TING OF EXPLORATION RESULTS
Criteria	Explanation	Detail
		All drillholes were drilled -90 degrees. The UG2 and MR geological and estimation models have been updated to include drilling and assaying data as at end of May 2024. The structural / geological model utilised 20 historical Nkwe drillholes and 82 SPD drillholes while the estimation model utilised 10 historical Nkwe drillholes and 73 SPD drillholes for the UG2 and 10 historical Nkwe drillholes and 18 SPD drillholes for the MR. 9 historical Anglovaal drillholes were used in the estimation of the Nooitverwacht extension.
		Anglovaal Data - UG2 Reef composites
		$\frac{1}{9(10)} = \frac{1}{9(10)} + $
		MMID3 -94898.00 -2748412.00 -873.74 1715.20 1718.28 3.08 1.25 1.01 0.08 0.19 2.51 NMID4 -94969.00 -2748412.00 -873.87 1715.31 1718.42 3.11 2.04 0.01 0.12 0.28 3.33 SPA2D4 -95907.00 -2738195.00 7.065 1742.261 1744.49 2.02 2.27 1.17 0.00 0.21 3.78 SPA2D4 -95907.00 -273728.00 1.90.32 1744.49 2.06 2.27 1.17 0.00 0.02 1.02 SRD1D10 -97728.00 -273728.00 1.90.32 1581.39 1583.39 1.54 1.86 1.04 0.65 5.40 SRD1D12 -97728.00 -273728.00 1.90.42 1581.55 1582.39 1.44 3.25 1.54 0.16 0.45 5.40 SRD1D12 -97728.00 -273728.00 1.90.42 1581.78 1683.19 1.44 3.25 1.54 0.6
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	N/A
	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	With the Mineral Resource update the statistical analysis recommended no top cutting of the grade for the UG2 reef. However, there is an instance (E121D1) within the MR where one sample had to be capped. The Mineral Resource has been declared at a paylimit of 2.2 g/t for the UG2 and 1.6 g/t for the MR.
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	The individual 20cm samples are combined per drillhole per reef intersection for the composite grades used in the estimation process.
Deletionship	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent has been reported but the various elements have been combined for 3PGE+Au grades (4E) and 6PGE+Au grades (7E).
Relationship between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should	The intersection lengths stated are the downhole lengths. The drillholes are drilled at -90 degrees and the reef dip is expected to be approximately 6 degrees. Therefore, the difference will be minimal.

	SECTION 2: REPOR	TING OF EXPLORATION RESULTS
Criteria	Explanation	Detail
	be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	A map of the drillhole positions and the stratigraphic column was included in the previous press releases. A section has also been included in previous press releases.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reef intersection depths for all the drillholes have been reported in the table below.

Drilling BHID	From		Vidth m	Merensky Reef Comment	From	To m	U Width m	G2 Reef Comment
E001 E001D1 E003	259.82	261.64	1.82	Complete intersection Deflection below MR Complete intersection	548.07 547.78 558.16	549.21 548.26 559.16	1.14	Complete intersection Complete Intersection Complete intersection
E003 E004 E004D1 E007	210.77	212.90	2.13	Complete intersection Deflection below MR Complete intersection	517.33 515.83 417.42	517.57 516.52 418.14	0.24	Pothole Pothole Complete intersection
E010 E010D1 E010D2	48.24			Complete intersection Deflection below MR Deflection below MR	361.67 361.89 361.25	362.20 362.49 361.90	0.52	Complete intersection Complete intersection Complete intersection
E010D2 E011 E011D1 E011D2	94.89 94.89 94.99	96.91			399.23	400.43	1.20	Deflection drilled for MR Deflection drilled for MR
E013 E014 E014D1	12.43	14.53	2.10 2.40	Complete intersection Deflection below MR	321.26 342.62 343.29	321.76 343.68 343.74	1.06	Complete Intersection Complete Intersection
E014D2 E015 E016	159.68		- - 0.91	Deflection below MR No MR expected - East of MR subcrop Pothole	342.19 291.89 449.24	343.06 292.63 450.01	0.87	Complete Intersection Complete intersection Complete intersection
E017 E019 E019a	154.50 20.25 19.55	156.55 22.45 22.35	2.05 2.20 2.80	Complete intersection Highly weathered & friable, Highly weathered & friable,	452.63 315.85	453.35	0.73	Complete intersection Hole stopped short Complete intersection
E020 E021 E021D1	54.20		1.19	Faulted No MR expected - East of MR subcrop No MR expected - East of MR subcrop	342.90 243.25 243.27	343.56 243.94 243.92	0.69	Complete intersection Complete intersection Incomplete Intersection
E021D2 E021D3 E024		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	243.19 243.32 278.77	243.65 243.98 279.26	0.46	Complete intersection Complete intersection Complete intersection
E025 E027 E028	9.58	68.66	2.46	No MR expected - East of MR subcrop Highly weathered, friable, core loss & Complete intersection	260.42 284.47 373.26	261.32 285.04 373.79	0.57	Complete intersection Complete intersection Complete intersection
E029 E029D1 E030	40.03	- 144.68	- 1.68	Highly weathered, friable, core loss & No MR expected - East of MR subcrop Complete intersection	314.68 315.08 409.55	314.88 315.10 410.07	0.52	Pothole Complete intersection
E031 E032 E033 E034	122.40	173.78	2.09	Complete intersection Complete intersection No MR expected - East of MR subcrop	416.57 462.66 253.62 292.00	417.19 463.98 254.25 292.94	1.32	Complete intersection
E034 E034D1 E034D2 E035	25.67	20.UU - -	2.33 - -	Highly weathered & friable, No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	292.00 292.38 292.74 253.92	292.94 292.97 293.27 254.43	0.59	complete intersection Incomplete intersection, Incomplete intersection, Incomplete intersection.
E035 E035D1 E036 E036D1	0.00	1.98	1.98	No MR expected - East of MR subcrop No MR expected - East of MR subcrop Highly weathered & friable, No MR expected - East of MR subcrop	253.92 253.94 271.34 271.26	254.43 254.44 271.65 271.80	0.50	Incomplete intersection, Incomplete intersection, Complete intersection
E036D2 E036D3 E037	-		-			271.80 271.90 271.64	0.60	Complete intersection Complete intersection Complete intersection Pothole
E039 E039D1 E041			-	No MIR expected - East of MIR subcrop No MIR expected - East of MIR subcrop No MIR expected - East of MIR subcrop No MIR expected - East of MIR subcrop	226.54 226.85 250.95	226.89 227.56 251.60	0.34	Complete intersection, Complete intersection Complete intersection
E043 E043D1 E043D2		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	258.25 257.55 258.00	258.41 258.36 258.32	0.15	Pothole Pothole
E044 E045 E046		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	258.75 202.21 238.66	259.42 202.82 239.22	0.67	Complete intersection Complete Intersection Complete Intersection
E048 E049 E050		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop Abandoned in the hanging wall	229.77	230.36		Complete Intersection Pothole Hole stopped short
E050D1 E051 E051D1		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	276.37 95.09 95.22	276.90 95.60 95.97	0.75	Incomplete intersection, Complete intersection
E052 E054			-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop	246.01 280.52 324.59	246.65 280.94 325.02	0.42 0.43	Complete Intersection Complete Intersection LG6A reef
E056**	-		-	No MR expected - East of MR subcrop	325.29 325.82 29.96	325.56 326.54 30.76		LG6 reef LG6 reef Highly weathered & friable,
E057**	-	-	-	No MR expected - East of MR subcrop	237.73 238.30 238.66	238.06 238.63 239.85	0.33 0.33 1.19	LG6A reef LG6 reef LG6 reef
E058 E059 E060	-	-	-	NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop	140.88 95.17	141.29 95.70	0.53	Complete intersection Complete Intersection Reef Missing
E060D1 E062 E062D1		-	-	NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop	178.78 31.27 31.45	179.29 32.30 32.27	1.03	Complete intersection Complete intersection, Moderately weathered &
E062D2 E064 E065	-	-	-	NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop	31.16 156.19 231.81	31.56 157.05 232.50 221.64	0.86	Moderately weathered & Complete intersection Complete intersection
E066 E066D1 E067 E069	-		-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop		221.64 221.63 300.20 241.39	0.44	Incomplete Intersection Complete Intersection Complete intersection Complete intersection
E009 E069D1 E070 E070D1			-	NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop	241.33	241.63 241.63 185.72 186.08	0.30	Complete Intersection Incomplete Intersection, Complete intersection
E071 E072 E072D1		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	180.04 248.48 248.71	180.73 249.01 249.44	0.69	Complete intersection Incomplete intersection, Complete Intersection
E072D2 E076 E077		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	248.64 233.22 259.56	249.22 233.68 259.93	0.58	Complete Intersection Complete Intersection Incomplete intersection,
E077D1 E079 E080		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	259.82 263.00 188.64	261.07 263.39 189.12	0.39	Complete intersection Complete intersection Complete intersection
E082 E082D1 E085	-		-	NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop	243.15 243.25 247.34	243.47 243.67 247.91	0.42	Incomplete intersection, Complete intersection Complete intersection Abandoned in the banging
E086 E086A E086AD1 E086AD2	-		-	Abandoned in the hanging wall No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	255.62 256.01 255.46	255.78 256.34 255.71	0.16	Abandoned in the hanging Complete intersection Complete intersection Complete intersection
E080AD2 E087 E091 E091D1	24.05	27.90	3.85	Highly weathered & friable, No MR expected - East of MR subcrop Deflection below MR	235.40 287.97 270.10 268.29	288.43 270.29 268.68	0.46	Complete intersection Pothole Pothole
E092 E100 E101	69.88 283.31 242.73	284.66	1.34	NS (Incomplete intersection, faulted Complete intersection Incomplete intersection (IRUP)	352.81 498.58 505.06	352.85 499.04 505.64	0.04	Pothole Complete intersection Complete intersection
E101D1 E105 E113	E	-		Deflection below MR Not developed No MR expected - East of MR subcrop	506.06 289.62	289.69	0.51	Pothole Not developed Pothole
E114 E115 E117		-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	87.75 215.44	88.52 216.05	0.77	Pothole Complete intersection Complete intersection
E118 E119 E120	27.64	29.65	2.01	Incomplete intersection, core loss Not developed No MR expected - East of MR subcrop	288.56 - 155.65	289.34 155.74	0.78	Complete intersection Not developed Pothole
E120D1 E121 E121D1	548.12	- - 548.92	-	No MR expected - East of MR subcrop Abandoned in the hanging wall Narrow Facies (faulted)	156.10	156.69		Pothole Hole stopped short Not developed
E122 E124 E124D1			-	No MR expected - East of MR subcrop Faulted Deflection below MR	179.19 350.06 349.67	179.75 350.65 350.28	0.59	Complete intersection Incomplete intersection Incomplete intersection
E125 E125D1 E126	-	-	-	No MR expected - East of MR subcrop No MR expected - East of MR subcrop No MR expected - East of MR subcrop	263.43	228.50 229.03 264.07	0.59	Incomplete intersection, Complete intersection Complete intersection
E126D1 E126D2 E126D3 E129	-	-	-	NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop NoMR expected - East of MR subcrop	263.49 263.10 263.27	264.03 263.59 263.68	0.48	Incomplete intersection Incomplete intersection Incomplete intersection
E128 E128D1 E128D2 E120	-	-	-	Complete intersection Deflection below MR Deflection below MR Deflection below MR	530.05 530.09 529.19	530.64 530.68 529.75	0.59	Complete intersection Complete intersection Complete intersection
E130 E130D1 E130D2 E131	287.11	-	-	Pothole Deflection below MR Deflection below MR Narrow facies (faulted)	501.09 499.63 500.96 489.86	501.47 500.04 501.25 489.92	0.41	Complete intersection Complete intersection Complete intersection Pothole
E131 E131D1 E132 E134	230.82		-	Narrow facies (faulted) Deflection below MR Faulted out Pothole	489.86 489.97 - 552.08	489.92 490.24 552.61		Pothole Pothole Not developed Complete intersection
E134 E134D1 E144	370.16	371.55	-	Deflection below MR Narrow facies (faulted)	551.86	552.15	0.32	Complete intersection Pothole

		TING OF EXPLORATION RESULTS
Criteria	Explanation	Detail
	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	A high-definition helicopter borne Total Magnetic Field (TMF) gradient and gamma-ray spectrometry survey was completed by New Resolution Geophysics (Pty) Ltd (NRG) in January of 2022 which highlighted the major structural features that could be expected. The total line kilometres flown was 1,425 lkm over the farms Eerstegeluk 327 KT and Nooitverwacht 324 KT with the survey being flown at a height between 25 m and 80 m due to the topography and residential areas with an average height of approximately 35 m to 40 m and a line spacing of 50 m.
Other substantive exploration data		The second secon
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas	The PFS drilling campaign has been completed with 30,746m of drilling consisting of 82 drillholes and 50 deflections. Deflections will now be drilled for short range variability work.
	of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	
Further work		Above are the structural blocks modelled from the drillhole database
		(UG2 on top and MR the second). The entire UG2 and MR area is now a Mineral Resource so there is limited upside potential within the project boundaries.

		TION AND REPORTING OF MINERAL RESOURCES
Criteria	Explanation	Detail
	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Geological data in the form of drillhole collar surveys, downhole surveys and geological logs captured on paper records was compared to data captured and saved in soft copy Excel spreadsheets that form the geological repository which informs the modelling database. Any errors, omissions, and invalid transcriptions identified were returned to the exploration team for rectification before the data was processed any further for use in 3D-structural modelling and grade estimation processes.
Database integrity	Data validation procedures used.	Base geological data informing the estimate was validated using in-built functionality in Datamine StudioRM software. Validation routine involved checking spatial location of drillholes collars and intersections, validity of stratigraphic logging, checking for repetition of logged intersections, reasons for the absence of analytical data, negative thicknesses and an assessment of the correlation of all aspects of the new drilling data to the historic drilling data from the Nkwe drillhole database. The Nkwe database was inspected for erroneous / non representative datapoints and removed based on the knowledge gained from the recent SPD drilling. The historical Anglovaal drilling database was captured from scanned copies into an excel spreadsheet and verified as much as possible with the surrounding reef intersection depths. The database reviewed to check for representative intersections that could be used in the resource estimation.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Person regularly visits the project site with the latest visit having been carried out on 20 May 2024.
	If no site visits have been undertaken indicate why this is the case.	Refer to above.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The Bengwenyama project is bounded to the northern extremity by a mine that is in current operation and economically exploiting the same UG2 reef. Several SPD drillholes are sited in areas in which similar drilling was completed by Nkwe Platinum during the early 2000s. Geological interpretation as informed from the current SPD holes, correlates well with interpretation from the historic Nkwe drill data. The historical Anglovaal data also confirms the 3D geological model of the reefs.
		The consolidated SPD database informing this estimate incorporates data from historic Nkwe drilling. This data was compiled by transcribing information from documents available in the public domain. Analytical data in the Nkwe drillholes is presented as 4E only. Individual PGEs were not reported. Results from QQ plots (R ² =0.93 for the UG2 and R ² =0.81 for the MR) suggest that SPD data is highly comparable to the Nkwe data. Accordingly, the data has been consolidated into a single geological database.
	Nature of the data used and of any assumptions made.	Additional historic exploration drilling data from Anglovaal, although spatially located outside the licence footprint, has been incorporated into the database informing the estimate. Analysis of this data suggests, a change of the UG2 morphology into a main chromitite seam and multiple stringers in the hanging wall of the UG2 bearing a materially different PGE mineralisation 4E prill split over the south-west section of farm Nooitverwacht compared to PGE mineralisation over farm Eestergeluk. This suggests different facies warranting modelling of the section as a separate domain. Consequent of low data density, grade interpolation for this section was achieved through Simple Kriging (SK) techniques with the resultant block model then appended to the rest of the block model completed via Ordinary Kriging techniques.
		The Anglovaal data provides support of insights into geological and grade continuity over undrilled west sections over farm Nooitverwacht with the quality of the data enabling declaration of Mineral Resources over farm Nooitverwacht.
		The MR data from the Anglovaal database was treated in the same manner as the UG2 data. The MR did however seem to be more similar to the SPD MR intersections but the area was still modelled separately as per the UG2 methodology.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The recently completed drilling campaign by SPD has confirmed that the dome structure on Eerstegeluk is larger than initially expect and this area has been excluded from the Mineral Resource. In the case of the MR there is a portion of the dome structure that does still have MR present. The additional Anglovaal drillhole data has however confirmed that the UG2 and MR continue to the southern boundary of Nooitverwacht.
	The use of geology in guiding and controlling Mineral Resource estimation.	Contouring of the elevation of the UG2 reef and MR top contact as interpreted from geological logging, knowledge of the regional structural geology, incorporation of mapped faults, dykes, sills, and the use of data from the TMF gradient and gamma-ray spectrometry survey completed by New Resolution Geophysics (Pty) Ltd (NRG) in January of 2022, highlighting the major structural features, guided delineation of fault blocks and culminated in the generation of the associated UG2 and MR 3D wireframe model.

Oritoria		TION AND REPORTING OF MINERAL RESOURCES
Criteria	Explanation The factors affecting continuity both of grade and geology.	Detail The project area is bisected by faults and several dyke swarms with throws in excess of 200m. Current structural interpretation postulates the Eerstegeluk Dome area comprises a stack of several upthrow faults culminating in an overall upthrow of the UG2 reef to a location as shallow as 30m below surface. Other than potholing observed in the areas limited to the northern periphery, the PGE grades appear unaffected. The dome structure does however disrupt the reefs and has been excluded from the resource in these areas.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Bengwenyama project covers an area of approximately 52.9km ² with a strike of approximately 4km. Data from the drillholes suggests a down-dip continuity of UG2 and MR reef over approximately 11km at an average true dip of approximately 6-7°, north-west. A typical West-East cross section through the deposit showing separation of the UG2 and Merensky reefs is provided below. This section does not show the dome structure to the south of Eerstegeluk.
values, domaining,	appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining,	The 3D wireframe modelling process was completed in Seequent's LeapFrog Geo® Version 2023.2.3 geological modelling software. Statistical analysis (CoV<1) on the base geological data informing UG2 grade estimates suggests no capping or treatment of extreme values is necessary. However, for the MR one sample needed capping to values as provided below.
	interpolation parameters and maximum distance of extrapolation from data	Reef Element Capping Value MR Pt 3.028
	points. If a computer assisted estimation method	MR 4E 4.680
	was chosen include a description of computer software and parameters used.	MR Thickness 1.01 Ordinary Kriging, an industry best choice for evaluation of PGEs, has been
Estimation and modelling techniques		applied for all grade interpolation with all grade estimation processes completed in Datamine StudioRM [™] Version 2.1.125.0 geological modelling software. No geological domains, except for the Nooitverwacht split reef domain (simple kriging domain) have been defined and anisotropy has not been identified. A facies plan has been developed with the majority (77%) of the UG2 reef falling into the massive UG2 facies. The Merensky reef also has defined facies but not separate geological domains, except for the Nooitverwacht extension for the simple kriging.
		Kriging neighbourhood analysis (KNA) recommended a parent block size of 350m (in X and Y directions) with a minimum and maximum number of samples of 5 and 15 respectively for the first search volume which is matched to the range of the 4E modelled variogram (approximately 2,000m). Three search volumes with decreasing samples were used for the estimation.
		All PGE elements, Pt, Pd, Rh, Au, Ir, Os and Ru as well as base metals Cu, Ni, Cr and Fe were individually estimated in addition to estimation of combined 4E (Pt, Pd, Rh & Au) and 7E (Pt, Pd, Rh, Ir, Os, Ru & Au) grades, density and reef thickness. Extrapolation has been carried out to half the average drillhole spacing and where applicable terminated on the major geological structures.
The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.		The Bengwenyama Project is a green field project with no mining activity ever recorded. As such no depletion of Mineral Resources is applicable. The previous estimate for the Bengwenyama Project declared as at 01 December 2023 presented 20.8Mt at 8.08g/t 4E (5.4 Moz) Indicated Resources and 29.99Mt at 7.87g/t 4E (7.58 Moz) Inferred Resources.

		TION AND REPORTING OF MINERAL RESOURCES			
Criteria	Explanation	Detail Concerted effort with the additional SPD drilling completed to date resulted in filling of gaps within the previous wide spaced grid (approximately 500 m x 500 m) reducing it to approximately 350 m x 350 m on farm Eestergeluk. This has resulted in significant elevation of confidence in structural interpretation enabling upgrading of various sections of the Minerals Resources to higher categories. Although the direct reconciliation of the current estimate to previous estimates is now convoluted, consistency in 4E and 7E grade between the current and all previous estimate remains notable.			
	The assumptions made regarding recovery of by- products.	Metallurgical testwork is currently underway to establish the viability of recovery of any by-products, in particular chromite. There is no record of previous similar testwork completed in the Bengwenyama project area. However, the UG2 on the eastern limb of the BC is well known and understood and the average recoveries have been assumed for now.			
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	Other than the base metals Cu, Ni and Fe, no deleterious elements have been identified. The base metals have all been estimated on elemental basis with the Cr:Fe ratio of the UG2 chromitite horizon, from modelled Cr and Fe analysis, observed to be around 1.21.			
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Drillhole spacing is not on a defined grid owing to challenges drilling in a populated space. The well drilled areas are typically informed by an average drillhole spacing of approximately 350m with areas even closer at approximately 200m spacing with poorly informed areas informed by drilling spacing in excess of 750m to 1,000m.			
		Kriging neighbourhood analysis (QKNA) recommended a parent block size of 350m (in X and Y directions) with a minimum and maximum number of samples of 5 and 15 respectively for the first search volume which is matched to the range of the 4E modelled variogram (approximately 1,000m). Three search volumes with decreasing samples were used for grade estimation.			
	Any assumptions behind modelling of selective mining units.	A study to test the viability of several possible options and in some cases combinations of mining methods is currently underway. The current modelling does not incorporate guidance from knowledge of any possible proposed mining method or selective mining approach.			
Estimation and modelling techniques (continued)	Any assumptions about correlation between variables.	The QQ plot results (R ² =0.93 for the UG2 and R ² =0.81 for the MR) suggest SPD data is highly comparable to the Nkwe historic drill data. $\int_{0}^{Q-Q} Plot Nkwe vs Mincon Data}$ $\int_{0}^{Q-Q Plot Nkwe vs Mincon$			
	Description of how the geological interpretation was used to control the resource estimates.	Major structural discontinuities were identified from interpretation of the TMF gradient and gamma-ray spectrometry survey, field mapping and contouring of elevation of the UG2 reef top contact. Knowledge of regional structural geology and regional geological losses guided delineation of fault blocks and the generation of the resultant UG2 and MR 3D wireframe model. The additional historic Anglovaal drilling data informed UG2 and MR wireframe models generated for areas located spatially outside the licence footprint. The models provide support of geological and grade continuity over undrilled west sections over farm Nooitverwacht with the quality of the Anglovaal data enabling declaration of Mineral Resources over Nooitverwacht. Further analysis of the Anglovaal data suggests a different UG2 facies towards the west warranting modelling of the section as a separate domain. Due to low data density, grade interpolation for this section has been completed through Simple Kriging (SK) techniques with the resultant block model appended to the rest of the block model which was completed via Ordinary Kriging techniques. The MR was treated in a similar fashion even though the MR facies seem to be more similar. Guidance from kriging quality parameters such as spatial continuity of kriging efficiencies, assessment of bias through analysis of the slope of regression			

Oritoria		TION AND REPORTING OF MINERAL RESOURCES			
Criteria	Explanation	Detail results, sample search volume used and number of samples informing a grade			
		estimate underpin constraint of grade extrapolations beyond known drilling.			
	Discussion of basis for using or not using grade cutting or capping.	Other than one MR sample, statistical analysis (CoV<1) on raw data informing the estimate suggests that no capping or treatment of extreme values is necessary.	g		
	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available. Whether the tonnages are estimated on a dry basis or	Integrity of grade estimation was validated through swath plots in the X and Y directions, sample-to-model box-whisker plots on global means for all estimate grades and the visual analysis of grade plans for the 4E and 7E grades as we as plans showing the spatial distribution of the UG2 reef thickness, Slope of Regression, Kriging Efficiencies, Search Volume and the number of samples used to inform grades estimates.	ted ell		
Moisture	with natural moisture, and the method of determination of the moisture content.	All tonnages are reported on a dry basis.			
Cut-off	The basis of the adopted cut-off grade(s) or quality	Zone specific geological losses have been applied and the Mineral Resources are declared at a paylimit of 2.2 g/t and 1.6 g/t 4E using a basket price of USD 2,691/oz and USD 1,969/oz for the UG2 Reef and MR respectively. The Miner Resource has been stated as in-situ or over reef widths. However, a mining ou has been estimated for the UG2 which includes the low-grade PGE mineralisation in the footwall as part of the mining dilution. The mining is being planned at a stope width of 1m. Below are the parameters used for the basket price and pay limit calculation.	D eral cut ng		
parameters	parameters applied.	Element Resource price (USD/oz) 4E prill split_UG2 7E prill split_UG2 Recovery Payabilit	itv		
			36%		
			36%		
			36%		
			36% 55%		
			15%		
			15%		
Mining factors or assumptions	if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	It is envisaged that the Mineral Resource mining cut will be approximately 1m the UG2 due to the absence of stringers in the footprint of the currently drilled area. The hanging wall contact is a distinct Leuconorite plane referred to as th Leuconorite Parting Plane (LPP) and forms a distinct sharp hanging wall contac with no chromitite stringers above it. For the MR the mining cut will probably b the reef width, which is approximately 2,00m plus 10cm hanging wall and 10cm footwall dilution. Mining studies on the possible practical mining methods or a combination thereof are currently being concluded. The current geological modelling does not incorporate any assumptions or provide any form of guidance for a chosen specific mining method.	d he tact be		
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of	Samples for metallurgical testwork for the UG2 have been submitted to the SC and Suntech Geomet laboratories to establish the most optimal recovery meth or a combination thereof. The current geological modelling supporting this estimate does not incorporate any assumptions or provide guidance for a specific recovery method.	thod		

		TION AND REPORTING OF MINERAL RESOURCES
Criteria	Explanation the metallurgical	Detail
	assumptions made.	
	Assumptions made	
Environmental factors or assumptions	regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions	A series of specialised environmental studies are in the process of being commissioned to establish a balance between compliance of the eventual chosen mining method to environmental regulations against optimal and practical extraction that will achieve the least environmental impact. The current geological modelling supporting this estimate does not incorporate any assumptions or provide guidance to achieve the least environmental impact.
Bulk density	made. Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.),	The density for the UG2 was modelled and the average density is 3.92 t/m ³ for the UG2 and an average density of 3.28 t/m ³ was used for the MR in the tonnage estimation. The density was determined empirically using the Archimedes method on UG2 reef and MR intersection samples from the SPD drillholes. The determination of density is an ongoing exercise conducted by the field exploration team to expand the database for use to support tonnage estimates. Limited bulk density information was available for the Anglovaal drillholes. An average density of 3.77 t/m ³ and 3.18 t/m ³ for the UG2 and MR respectively, was used for the simple krige portion of the estimation.
n b z C b ir	moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Not applicable
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The Mineral Resource categories were determined based on drillhole density, data quality, QAQC, slope of regression (SOR), kriging efficiency (KE), sample search volumes and knowledge of the continuity of the UG2 reef horizon.

Criteria	SECTION 3: ESTIMA Explanation	TION AND REPORTING OF MINERAL RESOURCES Detail
Sintonia		Mineral Resource Classification – UG2 Reef
		-273569 N -273569 N -273569 N -273569 N -273569 N -275569 N -27569 N -275569 N -
		The Measured Mineral Resources are based on a drill spacing of 200m x 200m (in structurally complex areas) and 350m x 350m (in less structural complex areas), SOR greater than 0.75, sample search within first volume (4E variogram range), a minimum of 5 drillholes and high confidence in UG2 structural interpretation. The Indicated Mineral Resources are based on a general drill spacing of 350m x 350m, a SOR between 0.6 and 0.75, a KE greater than 0.25, sample search within second volume, high confidence in UG2 structural interpretation and application of local knowledge of areas with high confidence in UG2 reef continuity. The Inferred Mineral Resources are based on drill spacing greater than 500m x 500m, a SOR of less than 0.6, extrapolation based on one and a half the distance of the range of the 4E grade variogram with termination on major structural discontinuities such as interpreted or mapped major faults and dykes. The extrapolated inferred is beyond the inferred criteria, up to project boundary.
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	Geological losses have been applied to the resource to account for the effects of faults, dykes, and potholes. This was estimated by considering the successful drillhole intersections, identified major faults and dykes from the TMF geophysics and additional minor losses. The project area was divided into larger blocks representing various degrees of geological losses. The geological losses for the UG2 range from 15% to 50% with the Eerstegeluk Dome area completely excluded at this stage of reporting. For the MR the geological losses range from 25% to 50% for the extrapolated inferred portion and the top 40m (vertically) at the subcrop for the MR is also excluded due to weathering and oxidation.
		Geological Losses – UG2 Reef
		■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

	SECTION 3: ESTIMA	TION AND REPORTING OF MINERAL RESOURCES
Criteria	Explanation	Detail Geological Losses – Merensky Reef
		Prises N Notering Teers Prises N N N N N N N N N N N N N N N N N N
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The CP is of the opinion that the Mineral Resource classification criteria and associated results are a true reflection of the Bengwenyama orebody and demonstrate the current levels of confidence as informed by drill data.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The Mineral Resources estimate, as well as processes associated with estimation work as contained in this press release has been reviewed by an independent third party, Mr. Garth Mitchell, of ExplorMine Consultants (Pty) Ltd. Mr. Mitchell confirms validity and reasonableness of estimate and confirms that due care and diligence was applied in the compilation. SRK Consulting (Pty) Ltd in South Africa have also reviewed the Mineral Resource estimation and have not found any fatal flaws.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	 The QQ plot results (R²=0.93 for the UG2 and R²=0.81 for the MR) suggest the SPD data is highly comparable to the Nkwe historic drill data and that the two datasets can be consolidated into a single database without any issues. The consolidation enabled back-calculation of individual Pt, Pd, Rh and Au grades from the single analytical 4E grade in the Nkwe drillholes basing on prill splits established from the complete empirical SPD analytical dataset as well at determining individual grades for Os, Ir and Ru from regression relationships. This has enabled reporting to 7E grade. In contrast to the Nkwe data, analysis of the Anglovaal data suggests a change in the PGE mineralisation 4E prill split and UG2 reef morphology into a split reef comprising a main chromitite seam and multiple stringers in the hanging wall over the south-west section of farm Nooitverwacht. As this suggests different facies, modelling of the section as a separate domain was warranted. In addition, due to low data density, grade interpolation for this section has been completed through the Simple Kriging (SK) technique with the resultant block model appended to the rest of the block model which was completed via the Ordinary Kriging technique. Accordingly, 4E grade and UG2 reef thickness estimates within this west section approach global means of the Anglovaal dataset. However, the quality of the supporting data is of such high standard it provided insights into geological and grade continuity to enable successful declaration of Mineral Resources over undrilled sections of Nooitverwacht.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The CP is of the opinion that geological modelling underlying the estimate contained in this press release is a true reflection of the Bengwenyama orebody and considers the grade and tonnage estimates robust.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	Not applicable